• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

"Investigação de estratégias para a geração de máquinas de vetores de suporte multiclasses" / Investigation of strategies for the generation of multiclass support vector machines

Lorena, Ana Carolina 16 February 2006 (has links)
Diversos problemas envolvem a classificação de dados em categorias, também denominadas classes. A partir de um conjunto de dados cujas classes são conhecidas, algoritmos de Aprendizado de Máquina (AM) podem ser utilizados na indução de um classificador capaz de predizer a classe de novos dados do mesmo domínio, realizando assim a discriminação desejada. Dentre as diversas técnicas de AM utilizadas em problemas de classificação, as Máquinas de Vetores de Suporte (Support Vector Machines - SVMs) se destacam por sua boa capacidade de generalização. Elas são originalmente concebidas para a solução de problemas com apenas duas classes, também denominados binários. Entretanto, diversos problemas requerem a discriminação dos dados em mais que duas categorias ou classes. Nesta Tese são investigadas e propostas estratégias para a generalização das SVMs para problemas com mais que duas classes, intitulados multiclasses. O foco deste trabalho é em estratégias que decompõem o problema multiclasses original em múltiplos subproblemas binários, cujas saídas são então combinadas na obtenção da classificação final. As estratégias propostas visam investigar a adaptação das decomposições a cada aplicação considerada, a partir de informações do desempenho obtido em sua solução ou extraídas de seus dados. Os algoritmos implementados foram avaliados em conjuntos de dados gerais e em aplicações reais da área de Bioinformática. Os resultados obtidos abrem várias possibilidades de pesquisas futuras. Entre os benefícios verificados tem-se a obtenção de decomposições mais simples, que requerem menos classificadores binários na solução multiclasses. / Several problems involve the classification of data into categories, also called classes. Given a dataset containing data whose classes are known, Machine Learning (ML) algorithms can be employed for the induction of a classifier able to predict the class of new data from the same domain, thus performing the desired discrimination. Among the several ML techniques applied to classification problems, the Support Vector Machines (SVMs) are known by their high generalization ability. They are originally conceived for the solution of problems with only two classes, also named binary problems. However, several problems require the discrimination of examples into more than two categories or classes. This thesis investigates and proposes strategies for the generalization of SVMs to problems with more than two classes, known as multiclass problems. The focus of this work is on strategies that decompose the original multiclass problem into multiple binary subtasks, whose outputs are then combined to obtain the final classification. The proposed strategies aim to investigate the adaptation of the decompositions for each multiclass application considered, using information of the performance obtained for its solution or extracted from its examples. The implemented algorithms were evaluated on general datasets and on real applications from the Bioinformatics domain. The results obtained open possibilities of many future work. Among the benefits observed is the obtainment of simpler decompositions, which require less binary classifiers in the multiclass solution.
2

"Investigação de estratégias para a geração de máquinas de vetores de suporte multiclasses" / Investigation of strategies for the generation of multiclass support vector machines

Ana Carolina Lorena 16 February 2006 (has links)
Diversos problemas envolvem a classificação de dados em categorias, também denominadas classes. A partir de um conjunto de dados cujas classes são conhecidas, algoritmos de Aprendizado de Máquina (AM) podem ser utilizados na indução de um classificador capaz de predizer a classe de novos dados do mesmo domínio, realizando assim a discriminação desejada. Dentre as diversas técnicas de AM utilizadas em problemas de classificação, as Máquinas de Vetores de Suporte (Support Vector Machines - SVMs) se destacam por sua boa capacidade de generalização. Elas são originalmente concebidas para a solução de problemas com apenas duas classes, também denominados binários. Entretanto, diversos problemas requerem a discriminação dos dados em mais que duas categorias ou classes. Nesta Tese são investigadas e propostas estratégias para a generalização das SVMs para problemas com mais que duas classes, intitulados multiclasses. O foco deste trabalho é em estratégias que decompõem o problema multiclasses original em múltiplos subproblemas binários, cujas saídas são então combinadas na obtenção da classificação final. As estratégias propostas visam investigar a adaptação das decomposições a cada aplicação considerada, a partir de informações do desempenho obtido em sua solução ou extraídas de seus dados. Os algoritmos implementados foram avaliados em conjuntos de dados gerais e em aplicações reais da área de Bioinformática. Os resultados obtidos abrem várias possibilidades de pesquisas futuras. Entre os benefícios verificados tem-se a obtenção de decomposições mais simples, que requerem menos classificadores binários na solução multiclasses. / Several problems involve the classification of data into categories, also called classes. Given a dataset containing data whose classes are known, Machine Learning (ML) algorithms can be employed for the induction of a classifier able to predict the class of new data from the same domain, thus performing the desired discrimination. Among the several ML techniques applied to classification problems, the Support Vector Machines (SVMs) are known by their high generalization ability. They are originally conceived for the solution of problems with only two classes, also named binary problems. However, several problems require the discrimination of examples into more than two categories or classes. This thesis investigates and proposes strategies for the generalization of SVMs to problems with more than two classes, known as multiclass problems. The focus of this work is on strategies that decompose the original multiclass problem into multiple binary subtasks, whose outputs are then combined to obtain the final classification. The proposed strategies aim to investigate the adaptation of the decompositions for each multiclass application considered, using information of the performance obtained for its solution or extracted from its examples. The implemented algorithms were evaluated on general datasets and on real applications from the Bioinformatics domain. The results obtained open possibilities of many future work. Among the benefits observed is the obtainment of simpler decompositions, which require less binary classifiers in the multiclass solution.

Page generated in 0.0797 seconds