• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Negative Emission Ammonia Fertilizer (urea) Process / Analys av negativa utsläpp från ammoniak gödsel (urea) processen

Alejo Vargas, Lucio Rodrigo January 2020 (has links)
As the world population keeps increasing, ammonia-based fertilizers like urea are essential to provide food security. However, the current fertilizer industry is based on fossil fuel feedstock (mainly natural gas), making the production process CO2 emission-intensive. More specifically, besides the CO2 emitted during the process, the CO2 captured in urea is also released into the atmosphere after the fertilizer is applied to agricultural soils. Thus, positioning the fertilizer industry among the top four industrial emitters globally. Hence, in order to meet the target of limiting global warming to 1.5 ºC and achieve net-zero emissions by 2050, it is necessary to strengthen the carbon mitigation efforts in the current fertilizer industry. This can be achieved in different ways, such as using renewable biofuels and implementing technologies that can lead to zero/negative CO2 emissions. For that reason, the present study presents pathways to achieve a more environmentally friendly fertilizer production process. An overall analysis is performed if negative emissions can be achieved by replacing different fractions of natural gas (used as both feedstock and fuel) with biogas and biomethane and by capturing and storing the CO2 emitted from the process using chemical solvents as activated MDEA and MEA. The results obtained from the study revealed that negative emissions in fertilizer plant can be achieved by retrofitting an existing ammonia plant with a MEA based CO2 capture system (with a carbon capture rate of 90%) for the SMR burner flue gas, and by introducing 50% of biogas in the feedstock (alongside Natural gas), and 75% of biogas in the SMR burner fuel (alongside Natural gas). This initial approach would result in net negative emissions from urea's production and application and require approximately 0.5 kg of biogas per kg of urea produced in this case. Furthermore, the equivalent energy intensity for the negative emission urea plant would be 0.32% and 3.37% lower compared to the fossil fuel-based case without/with CCS, respectively. Ultimately, it is even possible to produce approximately 6% more urea product by replacing a particular fraction of natural gas with biogas. The reason for this increased production is due to the surplus of carbon dioxide by the introduction of biogas. It can be used along with the ammonia product going to storage in the fossil fuel-based case, where there was not enough CO2 to keep the feedstock molar ratio at the urea plant's inlet.
2

Hydrogen liquefaction chain: co-product hydrogen and upstream study / Väteförvätskningskedja: samproduktväte och uppströmsstudie

Lusson, Salomé January 2021 (has links)
The European Green Deal declared that Europe must decarbonize to become carbon-neutral within 2050. To do so, the European Parliament emphasized hydrogen as a major tool for energy transition. In regard of current environmental challenges, liquid hydrogen has raised interest as energy carrier for energy storage and transport. Due to growing use of renewable energy sources such as solar and wind energy, intermittent sources will increase. Hydrogen production methods will become mostly intermittent with renewable energies. However, due to historical hydrogen production by steam methane reforming, liquefaction was developed at steady nominal charge. In order to feed current liquefaction processes with renewable hydrogen, a buffer system will become required. This thesis studies the effect of buffer and liquefaction combination on performances and cost. In order to carry out this liquefaction from intermittent source, the study is performed based on industrial data from a variable co-product hydrogen profile. This profile acts as a simplified case. The scope of the study is drawn by considering compressed hydrogen as temporary storage for the buffer while liquefaction unit is modelled around Linde Leuna cycle. The technical-economical study covers sensitivity analysis on both buffer and liquefaction unit. For the buffer unit, storage capacity, storage pressure, liquefaction flexibility and recuperation rate impacts are examined. Liquefaction sensitivity analysis includes pressure drop, electricity cost and capacity study.  It is highlighted that 100% gaseous hydrogen recovery is not profitable due to high costs increase for recuperation higher than 95%. Storage pressure and capacity as well as liquefaction flexibility drive buffer cost and recuperation rate of the co-product hydrogen. Considering liquefaction study, results highlight that pressure drops cause first order deviations in energy consumption as well as on cost. Results show that the specific buffer cost is evaluated between 71% and 59% of liquefaction cost. Hence the thesis raises attention on future work on heat exchangers design, pressure drop optimization and liquefaction unit flexibility to allow an optimized renewable liquid hydrogen production.

Page generated in 0.1866 seconds