Spelling suggestions: "subject:"enterococcus.""
21 |
Diversity and production of phytoplankton in the offshore Mississippi River plume and coastal environments [electronic resource] / by Boris Wawrik.Wawrik, Boris. January 2003 (has links)
Includes vita. / Title from PDF of title page. / Document formatted into pages; contains 329 pages. / Thesis (Ph.D.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: River discharge leads to extensive phytoplankton blooms often observed in ocean color satellite images to extend far into the open ocean as high chlorophyll plumes. We investigated diversity, distribution and ecology of phytoplankton populations in the Mississippi River plume, both spatially and in the water column using molecular tools. A method was developed for the quantification of diatom/pelagophyte rbcL (large subunit of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase) mRNA using quantitative PCR and applied to cultures and in the plume. The vertical structure of phytoplankton species in the Mississippi River plume was described by flow cytometry, pigments, rbcL mRNA and rbcL cDNA libraries. High productivity in the plume was associated with a large population of Synechococcus and elevated levels of cellular form IA rbcL mRNA. / ABSTRACT: rbcL cDNA libraries indicated two vertically separated clades of Prochlorococcus (high-light and low-light adapted) in addition to a diverse group of prymnesiophytes and a microdiverse clade of prasinophytes, which may have dominated the SCM (Subsurface Chlorophyll Maximum). In situ sampling and satellite image analysis were used to estimate that the plume accounted for 41% and 13% of all surface water column ix productivity in the oligotrophic Gulf of Mexico, while covering less than 3% of its area. Coastally the plume is dominated by diatoms, which are replaced by a bloom of Synechococcus as the plume moves offshore. Diatoms as indicated by pigments and rbcL clone libraries again dominated the offshore, least productive plume. 15N uptake measurements indicated that rapid recycling of ammonium despite higher levels of nitrate primarily drives production in the offshore plume. / ABSTRACT: rbcL mRNA levels and photosynthetic capacity displayed strong diel patters in three out of four time series sampled during the GRIST (Geochemical Rate/mRNA Integrated Study). In addition it was demonstrated that transcriptional regulation of the global nitrogen regulatory protein NtcA in Synechococcus WH7803 may involve a small cis-encoded anti-sense mRNA. Methods for the generation of large insert BAC (Bacterial Artificial Chromosome) from cultures and the environment were refined. Partial sequencing and genomic comparison of an ntcA containing BAC clone obtained from Synechococcus WH7803 indicated that ntcA is not part of a larger nitrogen assimilation operon in cyanobacteria. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
|
22 |
Diversity and Production of Phytoplankton in the Offshore Mississippi River Plume and Coastal EnvironmentsWawrik, Boris 25 September 2003 (has links)
River discharge leads to extensive phytoplankton blooms often observed in ocean color satellite images to extend far into the open ocean as high chlorophyll plumes. We investigated diversity, distribution and ecology of phytoplankton populations in the Mississippi River plume, both spatially and in the water column using molecular tools. A method was developed for the quantification of diatom/pelagophyte rbcL (large subunit of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase) mRNA using quantitative PCR and applied to cultures and in the plume. The vertical structure of phytoplankton species in the Mississippi River plume was described by flow cytometry, pigments, rbcL mRNA and rbcL cDNA libraries. High productivity in the plume was associated with a large population of Synechococcus and elevated levels of cellular form IA rbcL mRNA. rbcL cDNA libraries indicated two vertically separated clades of Prochlorococcus (high-light and low-light adapted) in addition to a diverse group of prymnesiophytes and a microdiverse clade of prasinophytes, which may have dominated the SCM (Subsurface Chlorophyll Maximum). In situ sampling and satellite image analysis were used to estimate that the plume accounted for 41% and 13% of all surface water column ix productivity in the oligotrophic Gulf of Mexico, while covering less than 3% of its area. Coastally the plume is dominated by diatoms, which are replaced by a bloom of Synechococcus as the plume moves offshore. Diatoms as indicated by pigments and rbcL clone libraries again dominated the offshore, least productive plume. 15N uptake measurements indicated that rapid recycling of ammonium despite higher levels of nitrate primarily drives production in the offshore plume. rbcL mRNA levels and photosynthetic capacity displayed strong diel patters in three out of four time series sampled during the GRIST (Geochemical Rate/mRNA Integrated Study). In addition it was demonstrated that transcriptional regulation of the global nitrogen regulatory protein NtcA in Synechococcus WH7803 may involve a small cis-encoded anti-sense mRNA. Methods for the generation of large insert BAC (Bacterial Artificial Chromosome) from cultures and the environment were refined. Partial sequencing and genomic comparison of an ntcA containing BAC clone obtained from Synechococcus WH7803 indicated that ntcA is not part of a larger nitrogen assimilation operon in cyanobacteria.
|
Page generated in 0.067 seconds