Spelling suggestions: "subject:"produits cartésien"" "subject:"produits cartésiennes""
1 |
Une approche de la théorie de D. Scott et application à la sémantique des types abstraits génériquesSoler, Roger 21 September 1982 (has links) (PDF)
La théorie des domaines de D. Scott est le fondement mathématique de la sémantique dénotationnelle des langages de programmation. On présente les éléments de cette théorie, Ainsi que la flacon de réaliser un calcul des retracts (i.e. des fonctions qui caractérisent les domaines). On donne les solutions des équations de domaines dans des domaines universels, en utilisant le formalisme des connexions de Galois. Ensuite, on aborde le probleme de la satisfaction des axiomes qui font partie de la définition des types abstraits génériques, en présentant ainsi une sémantique pour ce nouveau concept des langages de programmation
|
2 |
Modèles markoviens de ressources partagéesForbes, Florence 27 September 1996 (has links) (PDF)
Selon les domaines d'applications, différentes façons de modéliser le partage de ressources ont été envisagées. Un des premiers modèles apparus est issu du "Dining Philosophers Problem" de Dijkstra, généralisé par la suite par Chandy et Misra à travers le "Drinking Philosophers Problem". Nous nous intéressons à des versions markoviennes de ces situations, dans lesquelles les durées pour la prise et l'utilisation des ressources sont aléatoires. L'évaluation puis l'optimisation des performances des systèmes de ressources partagées nous conduit à étudier l'équilibre de ces modèles. Cette étude s'inscrit dans le contexte des propriétés de Markov des champs aléatoires sur les graphes dont nous présentons quelques résultats généraux. Nous utilisons également le formalisme des systèmes de particules. Nous introduisons une nouvelle classe de modèles markoviens de ressources partagées pour lesquels nous généralisons des outils classiques. Nous présentons des résultats de réversibilité et envisageons des techniques de comparaison stochastique. Pour des systèmes finis, nous donnons quelques calculs explicites de mesures d'équilibre. Des systèmes qui augmentent en taille et en complexité peuvent être approchés par des systèmes infinis. Pour des systèmes sur des graphes infinis construits à partir d'un arbre, nous mettons en évidence des phénomenes de transition de phase.
|
Page generated in 0.0944 seconds