• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 13
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 84
  • 34
  • 24
  • 22
  • 18
  • 17
  • 17
  • 16
  • 16
  • 15
  • 13
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of chain association in collagen types XII and XIII and other biochemical features of type XIII collagen using baculovirus-directed insect cell expression

Snellman, A. (Anne) 22 August 2000 (has links)
Abstract Type XII minicollagen chain association was studied using baculovirus-directed insect cell expression. Since insect cells contain low endogenous prolyl 4-hydroxylase activity, the mechanism of the effect of prolyl hydroxylation on trimer formation in this collagen could be studied directly by adding recombinant baculoviruses directing the synthesis of prolyl 4-hydroxylase. Prolyl 4-hydroxylase was shown to be involved in the trimeric assembly process of type XII collagen through its α subunit, and thus through its hydroxylase activity. The transmembrane protein type XIII collagen was also characterized by means of insect cell expression, for which purpose new antibodies against its non-collagenous domains NC2 and NC4 were generated, together with a pan-collagen antibody against collagenous sequences. Type XIII collagen α chains were found to form disulphide-bonded homotrimers, and this was enhanced by prolyl 4-hydroxylation. Analysis of the disulphide-bonding pattern of the eight cysteine residues of the α1(XIII) chains revealed that some of the cysteines in the NC1 domain, and possibly the cysteines at the junction of the COL1 and NC2 domains, are interchain-linked, while the cysteines in the NC4 domain are intrachain-linked. The three collagenous domains of type XIII collagen were shown to be in triple-helical conformation and have different thermal stabilities, i.e. 38±C for the COL1 domain, 49±C for COL2 and 40±C for COL3. Furthermore, it was shown that type XIII collagen is oriented in the plasma membrane of insect cells so that its non-collagenous N-terminus is intracellular and its mostly collagenous C-terminus is extracellular. Type XIII collagen was also found to be cleaved into the insect cell culture medium by a furin-like protease. The expression of various type XIII collagen deletion variants suggested that chain recognition and the association of type XIII collagen α chains into trimers occur in the N-terminal portion of this molecule. An internal in-frame deletion of residues 63-83 immediately adjacent to the transmembrane domain indicated that this short ectodomain sequence is necessary for the formation of disulphide-bonded trimers. Since a sequence homologous with these deleted residues was also found at the same plasmamembrane-adjacent location in other collagenous transmembrane proteins, this points to common features in their chain association.
2

Selective Inhibition and Mechanistic Studies of the Human O2 Sensor, Prolyl Hydroxylase Domain 2 (PHD2)

Flagg, Shannon Coates 01 September 2011 (has links)
Prolyl Hydroxylase Domain 2 (PHD2) has been identified as a key oxygen sensor in humans along with Factor Inhibiting Hypoxia Inducible Factor (FIH). As such PHD2 and FIH play critical roles in myriad pathways of medical relevance by hydroxylation of their target substrate hypoxia inducible factor (HIF), a transcription factor responsible for the regulation of over 100+ genes. With such critical roles in human physiology the ability to selectively regulate these two enzymes could potentially lead the way for novel therapeutic treatments of a vast array of disease states from cancer to myocardial infarction. We report on three classes of iron chelators which show promise for independent regulation of the HIF hydroxylases. Compounds representing the pyrones/pyridinones, pyridines and catechols were tested and found to have differential impacts on PHD2 and FIH under the same experimental conditions. The mode of inhibition is the result of binding to the active site iron and is supported by UV-visible and electroparamagnetic resonance spectroscopy. PHD2 at the current time does not have a well resolved mechanistic understanding regarding its catalytic cycle and subsequent rate determining steps. We have employed pH, solvent isotope, and X-ray absorption studies in an effort to gain further understanding regarding PHD2's overall mechanism. Our data support that dissociation of an iron(II)-OH2 bond centered about the active site contributes to a portion of the overall rate determining steps in the catalytic reaction of PHD2 that activates oxygen and ends with the production of hydroxylated substrate.
3

Identification of FKBP25 as a pre-ribosome associated prolyl isomerase

Gudavicius, Geoffrey 21 December 2016 (has links)
The FK506-binding proteins (FKBPs) are a class of peptidyl-prolyl isomerase enzyme (PPIs) that catalyze the cis-trans inter-conversion of peptidyl-prolyl bonds in proteins. This non-covalent post-translational modification is a reversible mechanism to modulate protein structure and function. PPIs have been implicated in a wide variety of processes from protein folding to signal transduction. Despite these enzymes being ubiquitous, the substrates and functions of most PPIs have yet to be described. FKBP25 is a nuclear FKBP that has been shown to associate with transcription factors and chromatin modifying enzymes, however its functions and substrates remain largely unresolved. FKBP25 is the human ortholog of S. cerevisiae Fpr4, which has been shown to regulate the chromatin landscape by two distinct mechanisms: 1. Acting as a histone chaperone at ribosomal DNA, and 2. Isomerizing histone prolines. Based on these observations, I hypothesized FKBP25 regulates chromatin and/or ribosome biogenesis through isomerization of histone prolines and a discrete collection of substrate proteins. While small molecule inhibitors exist for FKBPs, applying them to dissect the specific function(s) of any given FKBP is confounded by the fact that multiple FKBPs are found in each organism, and several are inhibited by these molecules. In Chapter 2, I biochemically and structurally characterize a set of FKBP25 loss-of-function mutants, yielding a toolset capable of distinguishing between catalytic and non-catalytic functions. These reagents provide the tools necessary to analyze potential substrates of FKBP25 identified in my research going forward. In Chapter 3, I present the first unbiased proteomic screen of FKBP25 associated proteins and show that it interacts with a large number of ribosomal proteins, ribosomal processing factors and a smaller subset of chromatin proteins. I focus on the interaction between FKBP25 and nucleolin, a multi-functional nucleolar protein, and show that FKBP25 interacts with nucleolin and the pre-60s ribosomal subunit in an RNA dependent fashion. In Chapter 4, I gain insight into the role of FKBP25 in ribosome biology, and demonstratex that FKBP25 regulates RNA binding activity of nucleolin, however this does not appear to involve cis-trans prolyl isomerization. Collectively, my work establishes FKBP25 as the first human FKBP to be implicated in the maturation of the pre-60S ribosomal subunit in the nucleus. My data supports a model whereby FKBP25 associates with the assembling large ribosomal subunit, where it is likely to chaperone protein-RNA interactions. / Graduate
4

Catalytic diversity of cupin domain-containing enzymes

Schnicker, Nicholas Jay 01 May 2017 (has links)
Cupins are a large superfamily of enzymatic and non-enzymatic members that contain a conserved β-barrel domain, or double-stranded β-helix (DSBH) fold. The cupin superfamily is one of the most functionally diverse groups of proteins known to exist. The vast majority of cupins contain a mononuclear metal binding site at the core of the DSBH fold capable of binding different metal ions. One of the largest cupin subfamilies is known as the Fe(II)/α-ketoglutarate (αKG)-dependent dioxygenases. Prolyl 4-hydroxylases (P4Hs) belong to the group of Fe(II)/αKG-dependent dioxygenases and catalyze the formation of 4R-hydroxyproline (Hyp) from various proline-containing substrates. The formation of Hyp is an important post-translational modification to many different proteins involved in essential biochemical pathways. Abnormalities in these pathways can lead to diseases such as cancer, fibrosis, respiratory issues, scurvy, and stroke. An Fe(II)/αKG-dependent prolyl hydroxylase from Bacillus anthracis (BaP4H) was investigated to understand its substrate recognition ability and catalytic properties. Novel crystal structures were solved that revealed conformational changes upon substrate binding and key interactions of various ligands in the active site for different catalytic steps. Although the majority of cupin family enzymes catalyze a reaction using iron as an essential cofactor, other metal cofactors can allow the diverse biological transformations carried out by this group of enzymes. A class of enzymes known as dimethylsulfoniopropionate (DMSP) lyases uses different metal ions to catalyze the formation of acrylate and dimethylsulfide (DMS) from DMSP. DMSP is one of the most prevalent and significant molecules to the life and biogeochemistry of the oceans. The products DMS and acrylate are environmentally significant and industrially valuable. DMSP is predominantly catabolized by marine bacteria and can serve different functions. One of the most abundant bacteria in the ocean, Pelagibacter, was determined to contain a DMSP lyase DddK. The DddK catalyzed DMSP lyase activity in the presence of different metal ions has shown that it catalytically prefers Ni(II) compared to other transition metal ions examined. Spectroscopic, site-directed mutagenesis, and crystallographic studies illustrate central residues responsible for metal ion binding and possible roles in transition state stabilization. A greater mechanistic understanding of DMSP lyases will lead to more impactful information about global environmental climate regulation.
5

Recombinant human collagens:characterization of type II collagen expressed in insect cells and production of types I-III collagen in the yeast <em>Pichia pastoris</em>

Nokelainen, M. (Minna) 22 August 2000 (has links)
Abstract An efficient system for expressing recombinant human collagens is expected to have numerous scientific and medical applications, but this is difficult to achieve because most systems do not have sufficient levels of activity of prolyl 4-hydroxylase, the key enzyme of collagen synthesis. A recombinant form of human type II collagen, the main structural component of cartilage, was produced here in insect cells by coinfecting them with two baculoviruses, one coding for the proα chains of human type II procollagen, and the other for both the α and β subunits of human prolyl 4-hydroxylase. The amino acid composition of the recombinant form was very similar to that of the non-recombinant protein, with the exception that the hydroxylysine content was very low. The highest expression levels obtained in suspension cultures were 50 mg/l. An additional baculovirus coding for human lysyl hydroxylase was used to express type II collagen with a high hydroxylysine content. Marked differences in the rate of fibril formation in vitro and the morphology of the resulting fibrils were found between the recombinant type II collagens having 2 and 19 hydroxylysine residues/1000 amino acids, the maximal turbidity of the former being reached within 5 min, whereas the absorbance of the latter increased up to about 10 h. In addition, the latter collagen formed thin fibrils, whereas the former produced thick fibrils on a background of thin ones. The data indicate that regulation of the extent of lysine hydroxylation, and consequently of the amounts of hydroxylysine-linked carbohydrate units, may have major effects on collagen fibril formation. In order to study the expression of recombinant human collagens in yeasts, cDNAs for the proα chains of procollagens of type I, II and III were transformed into a recombinant P. pastoris strain expressing human prolyl 4-hydroxylase subunits. All the P. pastoris strains obtained produced full-length proα chains. Cells coexpressing the proα1(I) chains and prolyl 4-hydroxylase produced homotrimeric type I procollagen molecules, whereas cells coexpressing the proα1(I) and proα2(I) chains and prolyl 4-hydroxylase produced heterotrimeric molecules with the correct 2:1 chain ratio. pCα1(I) and pCα2(I) chains lacking the N propeptides assembled into pCcollagen molecules and yielded correctly folded and fully hydroxylated collagen molecules upon pepsinization. The Tm values of recombinant type I-III collagens produced in shaker flasks were about 38°C and the degree of hydroxylation of proline residues was lower than that in the corresponding non-recombinant collagens. When the recombinant collagens were produced in a 2-litre fermentor equipped with an O2 supply system, the expression levels increased markedly to 0.2–0.6 g/l. In addition, all these collagens were identical in 4-hydroxyproline content to the corresponding non-recombinant proteins, and all of them formed native-type fibrils.
6

Collagen prolyl 4-hydroxylase:characterization of a novel vertebrate isoenzyme and the main <em>Caenorhabditis elegans</em> enzyme forms, and effect of inactivation of one of the two catalytic sites in the enzyme tetramer

Kukkola, L. (Liisa) 05 December 2003 (has links)
Abstract Collagen prolyl 4-hydroxylases catalyze the hydroxylation of proline residues in collagens. The vertebrate enzymes are α2β2 tetramers in which the β subunit is identical to protein disulphide isomerase (PDI). Two isoforms of the catalytic α subunit have been identified in vertebrates, forming type I [α(I)]2β2 and type II [α(II)]2β2 collagen prolyl 4-hydroxylase tetramers. This thesis reports on the cloning and characterization of a third vertebrate α subunit isoform, α(III). The recombinant human α(III) isoform associates with PDI to form an active type III collagen prolyl 4-hydroxylase tetramer, and its Km values for the cosubstrates are very similar to those of the type I and II enzymes, those for a peptide substrate and an inhibitor being found to lie between the two. The α(III) mRNA is expressed in all tissues studied but at much lower levels than the α(I) mRNA. A novel mixed tetramer PHY-1/PHY-2/(PDI-2)2 was found to be the main collagen prolyl 4-hydroxylase form produced in the nematode Caenorhabditis elegans in vivo and in vitro. However, mutant nematodes can compensate for the lack of the mixed tetramer by increasing the assembly of PHY-1/PDI-2 and PHY-2/PDI-2 dimers, these forms also being unique. The catalytic properties of the recombinant mixed tetramer were characterized, and it was shown by the analysis of mutant worms that PHY-1 and PHY-2 represent the only catalytic subunits needed for the hydroxylation of cuticular collagens. The roles of the two catalytic sites in a collagen prolyl 4-hydroxylase tetramer were studied by using the C. elegans mixed tetramer and a hybrid C. elegans PHY-1/human PDI dimer. An increase in the chain length of the peptide substrate led to an identical decrease in the Km values in both enzyme forms. It is thus clear that two catalytic sites are not required for efficient hydroxylation of long peptides, and their low Km values most probably result from more effective binding to the peptide-substrate-binding domain. Inactivation of one catalytic site in the mixed tetramer reduced the activity by more than 50%, indicating that the remaining wild-type subunit cannot function fully independently.
7

Étude du rôle de la phosphorylation de p54nrb et de son interaction avec l'isomérase Pin1 en mitose

Blier, Stéphanie 12 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2007-2008. / La protéine multifonctionnelle p54nrb , enrichie dans un nouveau domaine nucléaire nommé paraspeckles, fait partie de complexes de transcription/épissage comprenant l'ARN polymérase II et son partenaire PSF. Des travaux récents effectués dans notre laboratoire montrent que p54nrb est phosphorylée en mitose (Proteau A., Blier S., Albert A.L., Lavoie S.B., Traish A. M. and Vincent M. (2005) J. Mol. Biol. 346, 1163-1172). La phosphorylation est une modification post-traductionnelle pouvant affecter la localisation cellulaire d'une protéine, ses interactions, sa dégradation et son activité. Pour étudier l'impact de la phosphorylation mitotique de p54nrb , sa localisation cellulaire a été comparée en interphase et en mitose par immunofluorescence indirecte. Les résultats ont montré que la phosphorylation ne semble pas affecter sa localisation aux paraspeckles en mitose. Ensuite, ses interactions dans le complexe transcription/épissage ont été vérifiées en mitose par immunoprécipitation et pulldown. Les résultats ont montré que la phosphorylation ne semble pas affecter le complexe p54nrb-PSF-ARN polymérase II en mitose in vitro. Des analyses biochimiques ont finalement montré que la phosphorylation de p54nrb ne semble pas non plus empêcher son association à la matrice nucléaire. L'étude antérieure, citée précédemment, a également montré que p54nrb est reconnue par la peptidyl-prolyl isomérase Pinl en mitose. La juglone, un inhibiteur enzymatique de Pinl, a été utilisée pour évaluer l'effet de l'interaction de Pinl sur le niveau de phosphorylation de p54nrb . Les résultats ont montré que l'inhibition de Pinl empêche la déphosphorylation de p54nrb à la fin de la mitose ainsi que celle de PSF, nouveau substrat de Pinl. La protéine Pinl pourrait réguler chaque membre du complexe p54nrb-PSF-ARN polymérase II à la reprise du cycle cellulaire.
8

Prolyl endopeptidasa z krevničky Schistosoma mansoni / Prolyl endopeptidase of the blood fluke Schistosoma mansoni

Fajtová, Pavla January 2011 (has links)
Prolyl endopeptidase SmPEP from the blood fluke Schistosoma mansoni is investigated here for the first time. This enzyme is potentially interesting as a drug target for the treatment of schistosomiasis. SmPEP was detected in the extract of adult worms by enzyme activity and immunoreactivity. Enzymatically active SmPEP was produced in the E. coli expression system and was chromatographically purified. The pH optimum of recombinant SmPEP was about 8. Substrate specificity analysis revealed that SmPEP cleaved peptide substrates by endopeptidase activity, however, macromolecular substrates were not fragmented. The residue preferences in the positions P3 to P1' were determined using synthetic fluorogenic peptide substrates. SmPEP was found to be highly sensitive to the inhibition by Z-Ala-Pro-CMK and Z-Arg-Pro-CHO. Primary screening of crystallization conditions for recombinant SmPEP was performed. " (In Czech)"
9

Role of macrophages in healing the fibrotic lung : pan hydroxylase inhibition as a potential therapeutic mechanism

Alber, Andreas January 2013 (has links)
Pulmonary fibrosis is a common consequence of lung inflammation, leading to organ dysfunction and significant morbidity and mortality. Macrophages, through their diverse functions associated with polarisation status, play a role in lung homeostasis and alternatively activated (M2) macrophages have been associated with lung fibrosis. Prolyl hydroxylases (PHDs) are the main oxygen sensors and regulators of hypoxia inducible factors (HIFs). The PHD/HIF pathway is known to play a role in tissue inflammation and fibrosis, but their role in macrophage polarisation is not fully understood. Aim To study the role of the PHD/HIF pathway in macrophage polarisation and lung fibrosis, and specifically in Idiopathic Pulmonary Fibrosis (IPF). Hypothesis It was hypothesised that pan hydroxylase inhibition alters macrophage polarisation and modulates lung inflammation and fibrosis. Methods A combination of pharmacological (pan hydroxylase inhibitors DMOG and FG41) and genetic (HIF and PHD-null) tools were used to manipulate the PHD/HIF pathway. The bleomycin induced lung fibrosis model was used to define the effect of pan hydroxylase inhibition during the early, inflammatory or the late, fibrotic phase of this model. Murine bone marrow derived macrophages (BMDM), human monocyte derived macrophages and alveolar macrophages obtained from patients with lung fibrosis were used to study the effect of pan hydroxylase inhibition on macrophage polarisation. Bronchoalveolar lavage fluid (BALF) from patients was used to define the association between lung CCL18, an M2 associated chemokine, and disease progression in IPF. Results DMOG therapy during the early phase of the bleomycin model significantly reduced lung fibrosis at day 24. In contrast, late phase pan hydroxylase inhibition enhanced lung fibrosis at day 24. In both instances there was evidence of enhanced alveolar macrophage M2-like polarisation following pan hydroxylase inhibition. Reduced fibrosis after early pan hydroxylase inhibition was not a consequence of reduced acute lung inflammation or direct inhibition of collagen synthesis. In BMDM, pan hydroxylase inhibition resulted in an ‘augmented M2-like’ macrophage. Using LysM-Cre HIF-1α, HIF-2α and PHD-3 KO mice as well as chetomin, a potent inhibitor of HIF-1α and HIF-2α mediated gene expression, the HIF-dependent and HIF-independent polarisation markers were defined. PHD-3 deficiency was not sufficient to enhance M2 skewing. In contrast to murine BMDM, in human monocyte derived macrophages and alveolar macrophages from healthy volunteers and patients with interstitial lung disease including IPF, pan hydroxylase inhibition did not augment M2 polarisation and indeed significantly inhibited macrophage CCL18 expression. CCL18 studies in clinical BALF samples confirmed that CCL18 was elevated in the lungs of patients with IPF and other ILDs compared to controls. However, baseline BALF CCL18 concentrations did not correlate with disease severity or with disease progression, suggesting this is not a useful biomarker in IPF. Further, a unique study of serial BAL in IPF patients showed no association between 12-month change in CCL18 and disease progression over the same period. Indeed CCL18 concentrations mostly fell over 12 months in patients that did progress, strongly suggesting that CCL18 does not play a major pathogenic role in IPF. Concluding, it was shown that in both BMDM and murine lung pan hydroxylase inhibition promoted an ‘augmented M2-like’ polarisation. Pharmacological pan hydroxylase inhibition during the late fibrotic phase of injury enhanced fibrosis but it is not known if there was a causal association between M2 macrophages and lung fibrosis. Similarly, the functional relevance of finding enhanced M2 polarisation observed during early DMOG therapy, which subsequently resulted in attenuated fibrosis, is not known. In human macrophages, pan hydroxylase inhibition unexpectedly attenuated CCL18 production, a chemokine associated with an M2-like phenotype in man whilst other M2 markers were unchanged. However, there was no evidence to support a pathogenic role for CCL18 in IPF, and therefore there is little potential for using pan hydroxylase inhibition to target CCL18 and treat IPF.
10

The significance of the domains of protein disulfide isomerase for the different functions of the protein

Pirneskoski, A. (Annamari) 23 October 2003 (has links)
Abstract Protein disulfide bonds are covalent links formed between the thiol groups of cysteine residues. In many proteins, they have an important role in stabilizing the three-dimensional conformation of the polypeptide chain. Usually proteins are physiologically active and functional only when they are correctly folded. Protein folding takes place very soon after the synthesis of a new polypeptide chain. Proteins which are to be secreted from the cell fold in a specialized compartment, the endoplasmic reticulum (ER). Folding and disulfide bond formation in the ER does not happen spontaneously, there are proteins which are specialized in assisting in these processes. Protein disulfide isomerase (PDI) is a multifunctional protein, which is capable of catalysing both of disulfide bond formation and folding of a protein. In addition, it has other functions: it is an essential part of two protein complexes: collagen prolyl 4-hydroxylase (C-P4H) and microsomal triglyceride transfer protein. C-P4H is an enzyme essential in the formation of collagens, proteins found in connective tissue. The function of C-P4H is to catalyse the hydroxylation of prolines, which is essential for the structural stability of collagens. C-P4H is a tetramer, formed of two catalytic α subunits and two β subunits, which are identical to PDI. The function of PDI in C-P4H is apparently to keep it in a soluble, functionally active conformation. In mammals there are several proteins similar to PDI, together forming a PDI family of proteins. They share both structural and functional similarities. One of these proteins is ERp57. It is specialized in assisting in the folding and disulfide bond formation of glycoproteins. PDI consists of four domains, two of which contain a catalytic site for disulfide bond formation. One domain is the main site of interaction with other proteins and one domain is of unknown function. In this study, the role of these domains in the activities of PDI was investigated. The peptide-binding domain was characterized in detail. In addition, structural similarities of PDI and ERp57 were studied by formation of hybrid proteins containing domains of both and comparing the activities of these recombinant proteins to those of PDI.

Page generated in 0.0426 seconds