• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Temporal Emotion Dynamics in Social Networks

Naskar, Debashis 21 February 2022 (has links)
[ES] El análisis de sentimientos en redes sociales se ha estudiado ampliamente durante la última década. A pesar de ello, las distintas categorías de sentimientos no se consideran adecuadamente en muchos casos, y el estudio de patrones de difusión de las emociones es limitado. Por lo tanto, comprender la importancia de emociones específicas será más beneficioso para diversas actividades de marketing, toma de decisiones empresariales y campañas políticas. Esta tesis doctoral se centra en el diseño de un marco teórico para analizar el amplio espectro de sentimientos y explicar cómo se propagan las emociones utilizando conceptos de redes temporales y multicapa. Particularmente, nuestro objetivo es proporcionar información sobre el modelado de la influencia de las emociones y como esta afecta a los problemas de estimación de las emociones y a la naturaleza dinámica temporal en la conversación social. Para mostrar la eficacia del modelo propuesto, se han recopilado publicaciones relacionadas con diferentes eventos de Twitter y hemos construido una estructura de red temporal sobre la conversación. En primer lugar, realizamos un análisis de sentimientos adoptando un enfoque basado en el léxico y en el modelo circunflejo de emociones de Russell que mejora la efectividad de la caracterización del sentimiento. A partir de este análisis investigamos la dinámica social de las emociones presente en las opiniones de los usuarios analizando diferentes características de influencia social. A continuación, diseñamos un modelo estocástico temporal basado en emociones para investigar el patrón de participación de los usuarios y predecir las emociones significativas. Nuestra contribución final es el desarrollo de un modelo de influencia secuencial basado en emociones mediante la utilización de redes neuronales recurrentes que permiten predecir emociones de una manera más completa. Finalmente, el documento presenta algunas conclusiones y también describe las direcciones de investigación futuras. / [CA] L'anàlisi de sentiments en xarxes socials s'ha estudiat àmpliament durant l'última dècada. Malgrat això, les diferents categories de sentiments no es consideren adequadament en molts casos, i l'estudi de patrons de difusió de les emocions és limitat. Per tant, comprendre la importància d'emocions específiques serà més beneficiós per a diverses activitats de màrqueting, presa de decisions empresarials i campanyes polítiques. Aquesta tesi doctoral se centra en el disseny d'un marc teòric per a analitzar l'ampli espectre de sentiments i explicar com es propaguen les emocions utilitzant conceptes de xarxes temporals i multicapa. Particularment, el nostre objectiu és proporcionar informació sobre el modelatge de la influència de les emocions i com aquesta afecta als problemes d'estimació de les emocions i a la naturalesa dinàmica temporal en la conversa social. Per a mostrar l'eficàcia del model proposat, s'han recopilat publicacions relacionades amb diferents esdeveniments de Twitter i hem construït una estructura de xarxa temporal sobre la conversa. En primer lloc, realitzem una anàlisi de sentiments adoptant un enfocament basat en el lèxic i en el model circumflex d'emocions de Russell que millora l'efectivitat de la caracterització del sentiment. A partir d'aquesta anàlisi investiguem la dinàmica social de les emocions present en les opinions dels usuaris analitzant diferents característiques d'influència social. A continuació, dissenyem un model estocàstic temporal basat en emocions per a investigar el patró de participació dels usuaris i predir les emocions significatives. La nostra contribució final és el desenvolupament d'un model d'influència seqüencial basat en emocions mitjançant la utilització de xarxes neuronals recurrents que permeten predir emocions d'una manera més completa. Finalment, el document presenta algunes conclusions i també descriu les direccions d'investigació futures. / [EN] Sentiment analysis in social networks has been widely analysed over the last decade. Despite the amount of research done in sentiment analysis in social networks, the distinct categories are not appropriately considered in many cases, and the study of dissemination patterns of emotions is limited. Therefore, understanding the significance of specific emotions will be more beneficial for various marketing activities, policy-making decisions and political campaigns. The current PhD thesis focuses on designing a theoretical framework for analyzing the broad spectrum of sentiments and explain how emotions are propagated using concepts from temporal and multilayer networks. More precisely, our goal is to provide insights into emotion influence modelling that solves emotion estimation problems and its temporal dynamics nature on social conversation. To exhibit the efficacy of the proposed model, we have collected posts related to different events from Twitter and build a temporal network structure over the conversation. Firstly, we perform sentiment analysis with the adaptation of a lexicon-based approach and the circumplex model of affect that enhances the effectiveness of the sentiment characterization. Subsequently, we investigate the social dynamics of emotion present in users' opinions by analyzing different social influential characteristics. Next, we design a temporal emotion-based stochastic model in order to investigate the engagement pattern and predict the significant emotions. Our ultimate contribution is the development of a sequential emotion-based influence model with the advancement of recurrent neural networks. It offers to predict emotions in a more comprehensive manner. Finally, the document presents some conclusions and also outlines future research directions. / Naskar, D. (2022). Temporal Emotion Dynamics in Social Networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/180997

Page generated in 0.0712 seconds