Spelling suggestions: "subject:"emotionation prediction""
1 |
Multi-Class Emotion Classification for Interactive Presentations : A case study on how emotional sentiment analysis can help end users better convey intended emotionAndersson, Charlotte January 2022 (has links)
Mentimeter is one of the fastest-growing startups in Sweden. They are an audience engagement platform that allows users to create interactive presentations and engage an audience. As online information spreads increasingly faster, methods of analyzing, understanding, and categorizing information are developing and improving rapidly. Natural Language Processing (NLP) is the ability to break down input, for instance, text or audio, and process it using technologies such as computational linguistics and statistical learning, machine learning, and deep learning models. This thesis aimed to investigate if a tool that applies multi-class emotion classification of text could benefit end users when they are creating presentations using Mentimeter. A case study was conducted where a pre-trained BERT base model that had been fine-tuned and trained to the GoEmotions data set was applied as a tool to Mentimeter’s presentation software and then evaluated by end users. The results found that the tool was accurate; however, overall was not helpful for end users. For future research, improvements such as including emotions/tones that are more related to presentations would make the tool more applicable to presentations and would be helpful according to end users. / Mentimeter är en av Sveriges snabbast växande startupbolag som erbjuder en tjänst där användare kan skapa interaktiva presenationer och engagera sin publik. Medan infomration online sprids allt snabbare utvecklas och förbättras metoder för att kunna analysera, förstå och kategorisera information. Natural Language Processing (NLP) är förmågan att kunna bryta ner indata, som text och ljud, och processera det med hjälp av teknologier som datalingvistik och statistisk inlärnings, maskininlärnings, och djupinlärnings modeller. Syftet med denna uppsats var att undersöka om ett verktyg som applicerar multi-class emotion classification med text skulle gynna användare när de skapar presentation med Mentimeter. En fallstudie utfördes där en förtränad BERT modell som hade finjusterats och tränats på GoEmotions dataset applicerades som ett verktyg på Mentimeters programvara som användare sen fick utvärdera. Resultaten visar att verktyget var motsvarande men övergripande fann användarna att verktyget inte var hjälpsamt. För framtida forskning skulle förbättringar av verktyget som att använda känslor/toner som är mer relterade till presentationer göra verktyget mer hjälpsamt enligt användare.
|
2 |
Temporal Emotion Dynamics in Social NetworksNaskar, Debashis 21 February 2022 (has links)
[ES] El análisis de sentimientos en redes sociales se ha estudiado ampliamente durante la última década. A pesar de ello, las distintas categorías de sentimientos no se consideran adecuadamente en muchos casos, y el estudio de patrones de difusión de las emociones es limitado. Por lo tanto, comprender la importancia de emociones específicas será más beneficioso para diversas actividades de marketing, toma de decisiones empresariales y campañas políticas.
Esta tesis doctoral se centra en el diseño de un marco teórico para analizar el amplio espectro de sentimientos y explicar cómo se propagan las emociones utilizando conceptos de redes temporales y multicapa. Particularmente, nuestro objetivo es proporcionar información sobre el modelado de la influencia de las emociones y como esta afecta a los problemas de estimación de las emociones y a la naturaleza dinámica temporal en la conversación social. Para mostrar la eficacia del modelo propuesto, se han recopilado publicaciones relacionadas con diferentes eventos de Twitter y hemos construido una estructura de red temporal sobre la conversación.
En primer lugar, realizamos un análisis de sentimientos adoptando un enfoque basado en el léxico y en el modelo circunflejo de emociones de Russell que mejora la efectividad de la caracterización del sentimiento. A partir de este análisis investigamos la dinámica social de las emociones presente en las opiniones de los usuarios analizando diferentes características de influencia social. A continuación, diseñamos un modelo estocástico temporal basado en emociones para investigar el patrón de participación de los usuarios y predecir las emociones significativas. Nuestra contribución final es el desarrollo de un modelo de influencia secuencial basado en emociones mediante la utilización de redes neuronales recurrentes que permiten predecir emociones de una manera más completa.
Finalmente, el documento presenta algunas conclusiones y también describe las direcciones de investigación futuras. / [CA] L'anàlisi de sentiments en xarxes socials s'ha estudiat àmpliament durant l'última dècada. Malgrat això, les diferents categories de sentiments no es consideren adequadament en molts casos, i l'estudi de patrons de difusió de les emocions és limitat. Per tant, comprendre la importància d'emocions específiques serà més beneficiós per a diverses activitats de màrqueting, presa de decisions empresarials i campanyes polítiques.
Aquesta tesi doctoral se centra en el disseny d'un marc teòric per a analitzar l'ampli espectre de sentiments i explicar com es propaguen les emocions utilitzant conceptes de xarxes temporals i multicapa. Particularment, el nostre objectiu és proporcionar informació sobre el modelatge de la influència de les emocions i com aquesta afecta als problemes d'estimació de les emocions i a la naturalesa dinàmica temporal en la conversa social. Per a mostrar l'eficàcia del model proposat, s'han recopilat publicacions relacionades amb diferents esdeveniments de Twitter i hem construït una estructura de xarxa temporal sobre la conversa.
En primer lloc, realitzem una anàlisi de sentiments adoptant un enfocament basat en el lèxic i en el model circumflex d'emocions de Russell que millora l'efectivitat de la caracterització del sentiment. A partir d'aquesta anàlisi investiguem la dinàmica social de les emocions present en les opinions dels usuaris analitzant diferents característiques d'influència social. A continuació, dissenyem un model estocàstic temporal basat en emocions per a investigar el patró de participació dels usuaris i predir les emocions significatives. La nostra contribució final és el desenvolupament d'un model d'influència seqüencial basat en emocions mitjançant la utilització de xarxes neuronals recurrents que permeten predir emocions d'una manera més completa.
Finalment, el document presenta algunes conclusions i també descriu les direccions d'investigació futures. / [EN] Sentiment analysis in social networks has been widely analysed over the last decade. Despite the amount of research done in sentiment analysis in social networks, the distinct categories are not appropriately considered in many cases, and the study of dissemination patterns of emotions is limited. Therefore, understanding the significance of specific emotions will be more beneficial for various marketing activities, policy-making decisions and political campaigns.
The current PhD thesis focuses on designing a theoretical framework for analyzing the broad spectrum of sentiments and explain how emotions are propagated using concepts from temporal and multilayer networks. More precisely, our goal is to provide insights into emotion influence modelling that solves emotion estimation problems and its temporal dynamics nature on social conversation. To exhibit the efficacy of the proposed model, we have collected posts related to different events from Twitter and build a temporal network structure over the conversation.
Firstly, we perform sentiment analysis with the adaptation of a lexicon-based approach and the circumplex model of affect that enhances the effectiveness of the sentiment characterization. Subsequently, we investigate the social dynamics of emotion present in users' opinions by analyzing different social influential characteristics. Next, we design a temporal emotion-based stochastic model in order to investigate the engagement pattern and predict the significant emotions. Our ultimate contribution is the development of a sequential emotion-based influence model with the advancement of recurrent neural networks. It offers to predict emotions in a more comprehensive manner.
Finally, the document presents some conclusions and also outlines future research directions. / Naskar, D. (2022). Temporal Emotion Dynamics in Social Networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/180997
|
Page generated in 0.1244 seconds