• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3803
  • 2184
  • 834
  • 777
  • 396
  • 132
  • 103
  • 86
  • 78
  • 78
  • 78
  • 78
  • 78
  • 77
  • 62
  • Tagged with
  • 10910
  • 3042
  • 1898
  • 1328
  • 1107
  • 1099
  • 911
  • 834
  • 815
  • 658
  • 576
  • 559
  • 540
  • 499
  • 471
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Magnetic susceptibility scaling of rocks using geostatistical analysis : an approach to geologic and geophysical model integration

Pizarro, Nicolás 11 1900 (has links)
Rock physical properties are usually associated with important geologic features within mineral deposits and can be used to define the location, depth and size of the deposit, type of ore, or physical property contrast between the host and country rock. Geophysical surveys are sensitive to physical properties and therefore are widely used in mining exploration, especially in concealed terrains. The surveys can be performed at multiple scales, resulting in corresponding physical property datasets at different scales. Survey scale can vary from core or hand sample, involving few cubic centimeters, to regional-scale surveys providing information about physical property contrasts between distinct regional geological features. The understanding of the relationship between the physical property distributions with the sample volume (e.g. district, deposit, and drill-hole scale) is required where point scale physical property measurements are going to be consistent with measurements at larger volumetric scales during the integration of data for geophysical modeling The approach used to address the problem of understanding the scaling relations of physical properties, was achieved by considering them as second order stationary regionalized variables and then applying the random function formalism, provided by geostatistics theory. Geostatistics provide the required framework to characterize, quantify, model and link the spatial variability of the random variable at the different volumetric scales. The aim of this study is to apply geostatistics to effectively integrate data collected at several scales and bring knowledge to the understanding of the scaling relations of magnetic susceptibility. For this purpose, measurements of magnetic susceptibility available from Flin Flon copper-zinc district in Canada will be used. The data available at point scale were collected with hand portable magnetic susceptibility meter. The larger volumetric scale dataset were acquired using frequency domain electromagnetic instruments capable of measuring larger sample volumes, and then used to obtain magnetic susceptibility models using geophysical inversion algorithms. Once different scale models of magnetic susceptibility were available, quantification of the scaling relation using geostatistics, specifically variogram models and dispersion variance were determined. The understanding provided by the scaling analysis of the Flin-Flon magnetic data is applied to data from the Rio Blanco copper district in central Chile. Magnetic susceptibility measurements collected with a hand magnetic susceptibility meter on drill-core is integrated in larger scale volumes used for geophysical inversion modeling of regional scale airborne magnetic field measurements to recover magnetic susceptibility models. The methodology resulting from this application of geostatistics is used to address the problem of integrating multiple scales of physical property data in an effective way. The resulting physical property models capture the small-scale magnetic susceptibility variability observed and can guide larger-scale variability within geophysical inversion models. Establishing reliable statistical correlations between physical properties and rock units controlling ore within deposits are crucial steps leading predictive mine exploration tools. Any numerical modeling approach to establish these correlations should consider in some way the scaling nature of both physical property and ore content.
222

Simulation of microsegregation during binary alloy solidification

Kim, J. H. 08 1900 (has links)
No description available.
223

Synthesis, characterization and properties of diacetylene functionalized polyimides

Karangu, Njeri T. 12 1900 (has links)
No description available.
224

Synthesis and characterization of electrically conducting organic polymers

Chu, Der-Lun 05 1900 (has links)
No description available.
225

The impedence-frequency characteristics of quartz crystals

Dixon, Frederick 08 1900 (has links)
No description available.
226

The development of a method for the measurement of the heat capacities of solids at elevated temperatures.

Holmes, James. 05 1900 (has links)
No description available.
227

Optical reflectivity and auger spectroscopy of titanium and titanium-oxygen surfaces

Wall, William Edgar 08 1900 (has links)
No description available.
228

Mechanical properties of high performance fibers vis-a-vis applications in flexible structural composites

Sharma, Varunesh 12 1900 (has links)
No description available.
229

Ultrafast Dynamics of Individual Air-Suspended Single-Walled Carbon Nanotube

Nhan, TAM 03 September 2008 (has links)
Thorough understanding of the electronic and optical properties of single-walled carbon nanotubes (SWCNTs) will no doubt benefit future technological applications. Since the discovery of band gap photoluminescence from isolated semiconducting SWCNTs, significant progresses in studying the optical properties of SWCNTs have been made (e.g. linear polarization along the tube axis for the absorption and emission of light, excitonic nature in SWCNT excitation). However, there are still several controversial parameters of SWCNTs (e.g. quantum efficiency, absorption cross section, radiative lifetime, and Auger recombination lifetime). With the advancement in SWCNT sample preparation, studies of SWCNT intrinsic properties have shifted from ensemble to a single tube level, in which the ambiguities in elucidating intrinsic properties posed by the assortment of different tube species can be minimized. By examining individual SWCNTs suspended in air, in contrast to micelle-encapsulated SWCNTs, we believe that the environmental effects can be reduced. This thesis will demonstrate the capability of doing spectroscopy on a single semiconducting air-suspended SWCNT. In continuous-wave excitation, the photoluminescence excitation map and high resolution photoluminescence (PL) image of a SWCNT can be constructed, and PL polarization is proven. Quantum efficiency of 5% is experimentally estimated for (9,8) and (10,8) chiral SWCNTs. Pulse excitation allows us to study the intrinsic exciton dynamics of a SWCNT. To gain insight into exciton nonlinear decay processes, PL saturation in pump power dependence measurement is investigated and compared to the simulated results from stochastic models of exciton dynamics. Femtosecond excitation correlation spectroscopy with 150 fs time resolution is employed to time-resolve the PL of a single tube suspended in air. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2008-08-29 13:10:49.045
230

Thermoelectric power of some Ge-Mn-Te and Pd-Rh alloys

Cafaro, Andrea January 1976 (has links)
No description available.

Page generated in 0.0742 seconds