581 |
Effects of 1,25(OH)2D3 on Smad2 Activity in PC-3 Prostate Cancer CellsStahel, Anette January 2009 (has links)
The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this mainly through a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. Another major way inwhich 1,25(OH)2D3 inhibits cell growth in prostate cancer is via membrane-initiated steroid signalling, which triggers activation of signal cascades upon steroid binding to a receptor complex, leading to induction of genes regulating cell growth, proliferation and apoptosis. The main prostate cancer inhibiting membrane-initiated route is the TGFβ signalling pathway, elicited by the protein TGFβ. Another important protein downstream in this cascade is Smad2. In this study the early effects of 1,25(OH)2D3 on activated Smad2 levels in PC-3 prostate cancer cells were examined. PC-3 cells were incubated for 5, 10, 30 and 60 minutes as well as 24 and 40 hours both together with 1,25(OH)2D3 of the concentrations 10-10 and 107 M and without. An ELISA assay scanning for activated Smad2 was then performed on supernatants from both treated and untreated cells. This is a follow-up to an earlier study which examined the influence of 1,25(OH)2D3 on TGFβ levels using the same doses and similar time points and which found that 1,25(OH)2D3 initially lowered the level of active TGFβ, then increased it. The results of this study showed a statistically insignificant, time delayed 1,25(OH)2D3 mediated induction of the same pattern in the levels of active Smad2. / Project Work in Biomedicine, Advanced Level, 7.5 ECTS
|
582 |
Imaging and Characterizing Human Prostates Using Acoustic Radiation ForceZhai, Liang January 2009 (has links)
<p>Prostate cancer (PCa) is the most common non-cutaneous cancer in men in the United States. Early detection of PCa is essential for improving treatment outcomes and survival rates. However, diagnosis of PCa at an early stage is challenged by the lack of an imaging method that can accurately visualize PCas. Because pathological processes change the mechanical properties of the tissue, elasticity imaging methods have the potential to differentiate PCas from other prostatic tissues. Acoustic radiation force impulse (ARFI) imaging is a relatively new elasticity imaging method that visualizes the local stiffness variations inside soft tissue.</p><p>The work presented in this dissertation investigates the feasibility of prostate ARFI imaging. Volumetric ARFI data acquisition and display methods were developed to visualize anatomic structures and pathologies in <italic>ex vivo </italic>human prostates. The characteristic appearances of various prostatic tissues in ARFI images were identified by correlating ARFI images with McNeal's zonal anatomy and the correlated histological slides, in which prostatic pathologies were delineated by a pathologist blinded to the ARFI images. The results suggest ARFI imaging is able to differentiate anatomic structures and identify suspicious PCa regions in the prostate.</p><p>To investigate the correlation between ARFI displacement amplitudes and the underlying tissue stiffness in the prostate ARFI images, the mechanical properties of prostatic tissues were characterized using a quantitative method, based upon shear wave elasticity imaging (SWEI). Co-registered ARFI and SWEI datasets were acquired in excised prostate specimens to reconstruct the shear moduli of prostatic tissues. The results demonstrated that variations in ARFI displacement amplitudes were inversely related to the underlying tissue stiffness; and the reconstructed shear moduli of prostatic tissues had good agreements with those reported in literature. The study suggests the matched ARFI and SWEI datasets provide complementary</p><p> information about tissue's elasticity. </p><p>To increase the efficiency of the data acquisition, a novel imaging sequence was developed to acquired matched ARFI-SWEI datasets without increasing the number of excitations compared to a conventional ARFI imaging sequence. Imaging parameters were analyzed both theoretically and experimentally. An analytical model was derived to quantify the fundamental accuracy limit in the reconstructed shear modulus, and demonstrated good agreement with the experimental data. The novel sequence was demonstrated in tissue-mimicking phantoms.</p><p>Finally, ARFI imaging sequences were developed in a transrectal probe, and ARFI images were presented from <italic>in vivo</italic> data acquired in patients under radical prostatectomy. The <italic>in vivo</italic> ARFI images demonstrated decreased contrast and resolution as compared to the matched <italic>ex vivo</italic> ARFI data. However, prostate anatomy and some PCa were successfully visualized in the <italic>in vivo</italic> ARFI images. Thus, we conclude that ARFI imaging has the potential to provide image guidance for locating cancerous regions during PCa diagnosis and treatment.</p> / Dissertation
|
583 |
Influence of genetic variability on specialty potato functional components and their effect on prostate cancer cell linesReddivari, Lavanya 15 May 2009 (has links)
The influence of genotype (selection), location, and year on antioxidant activity
(AOA), total phenolics (TP), total carotenoids (TC), phenolic and carotenoid
composition was studied using specialty (colored) potatoes (Solanum tuberosum L.)
from the Texas Potato Variety Development Program, grown at two Texas locations
(McCook and Dalhart), and in two years (2003 and 2004). Chlorogenic acid, gallic acid,
catechin, caffeic acid, and malvidin-3-(p-coumaryl rutinoside)–5-galactoside were the
major phenolics, and lutein and violaxanthin were the major carotenoids identified.
The AOA, TP, and TC and phenolic composition differed significantly with
genotype, location and year. However, genotypic effects were larger than location and
year effects. Selection CO112F2-2 was high in all the measured parameters and also
stable across locations and years, suggesting that this selection could be used as a parent
in breeding varieties with improved health benefits. The AOA, TP and chlorogenic acid
content were highly significantly correlated with one another. The effects of whole specialty potato extracts, fractions and individual
compounds on LNCaP (androgen-dependent) and PC-3 (androgen-independent) prostate
cancer cells were also investigated. Ethanol extract of the selection CO112F2-2 (5 µg
chlorogenic acid eq/ml), the anthocyanin fraction (AF; 5 µg chlorogenic acid eq/ml),
gallic acid and chaconine showed potent anti-proliferative properties and increased the
cyclin-dependent kinase inhibitor p27 levels in LNCaP and PC-3 cells. Induction of
apoptosis was cell context dependent and associated with JNK (c-Jun NH2-terminal
Kinase) and Erk (extracellular signal regulated kinase) activation. Cell death pathways,
induced by potato extract and the AF, were associated with Erk and JNK activation, and
these kinases activated caspase-independent apoptosis through nuclear translocation of
endonuclease G (endo G) and apoptosis-inducing factor (AIF) in both cell lines.
Induction of caspase-dependent apoptosis was also kinase-dependent but was observed
only in LNCaP cells. Kinase inhibitors reversed this nuclear translocation of endo G and
AIF. This is the first report showing that the cytotoxic activities of potato extract/AF in
cancer cells were due to activation of caspase-independent apoptosis.
|
584 |
Effect of the antidepressant mirtazapine on intracellular Ca2+ signals and proliferation of prostate cancer PC3 and osteosarcoma MG63 cellsPan, Chih-chuan 12 July 2005 (has links)
The effects of the antidepressant mirtazapine on cytosolic Ca2+ concentrations ([Ca2+]i) in human prostate cancer PC3 cells and human osteosarcoma MG63 cells were measured by Ca2+-sensitive fluorescent probe fura-2. In Ca2+-containing medium, mirtazapine induced [Ca2+]i rises in a concentration-dependent manner in both PC3 and MG63 cells. Removal of extracellular Ca2+ inhibited the mirtazapine-induced Ca2+ signal. In Ca2+-free medium, thapsigargin (an inhibitor of the endoplasmic reticulum Ca2+-ATPase pump) induced [Ca2+]i rises by passively depleting the endoplasmic reticulum Ca2+ store, after which the increasing effect of mirtazapine (1.5 mM) on [Ca2+]i was reduced. Conversely, pretreatment with mirtazapine decreased thapsigargin-induced [Ca2+]i rises in PC3 and MG63 cells. When PC3 cells were pretreated with U73122, a phospholipase C inhibitor, mirtazapine-induced [Ca2+]i rises were inhibited by 47%. But in MG63 cells, 2 mM U73122 did not change mirtazapine-induced [Ca2+]i rises. These finding suggest that mirtazapine-induced [Ca2+]i rises were caused both by extracellular Ca2+ influx and intracellular depletion of the endoplasmic reticulum Ca2+ stores. Furthermore, the mechanism of mirtazapine-induced Ca2+ release may be different between PC3 and MG63 cells. Additionally, cell proliferation assays suggest that overnight incubation with higher concentrations of mirtazapine decreased cell viability in a concentration-dependent manner.
|
585 |
Relationship Between The Nat Genetic Polymorphism And Susceptibility To Prostate CancerDilek, Derya 01 July 2008 (has links) (PDF)
Prostate cancer (PCa) is one of the most prevelant cancers in males in many countries, increasing in frequency with age. PCa incidence and mortality rates are not evenly distributed worldwide. Family history is an established risk factor for prostate cancer and families demonstrating autosomal dominant or X-linked transmission of susceptibility have been observed. Although an increasing number of candidate genes or hereditary prostate cancer susceptibility have been identified, only 5 to 10 percent of prostate cancer cases in the population may arise from major susceptibility genes. A few risk factors for PCa development are advanced age, an intact androgen metabolism, ethnicity, and genetic background. Other genetic factors, in combination with possible environmental risk factors for prostate cancer, may have greater public health importance. Genetic polymorphisms that may be associated with prostate cancer risk are much more common in the population than are high-penetrance cancer susceptibility genes. In this study, the effect of N-acetyltransferase 2 (NAT2) and Glutathione S-transferases (GSTM1 and GSTT1) were investigated, since polymorphism in these genes may alter their enzymatic activity and, therefore, their capacity to biotransform xenobiotic compounds. In order to evaluate the potential association between NAT2 , GSTM1 and GSTT1 genotypes and prostate cancer risk, a hospital based case control study was carried out in a Turkish population consisting of 30 histologically confirmed incident prostate cancer cases and 67 control subjects with no present or previous history of cancer. The GSTM1 and GSTT1 genotypes showed no significant differences between case and control groups, with respect to their frequencies and it was observed that GSTM1 null genotype was more common in cases with a 60% frequency. Even though the frequency of slow NAT2 acetylator genotype was 80% in cases and 50,7% in controls NAT2 rapid acetylator showed no association with prostate cancer statistically. These results suggested that GSTM1 null genotype is a susceptibility factor for prostate cancer, particularly in the presence of NAT2 slow acetylator genotype with no significance. Further studies with a larger size are required to confirm the presence and significance of this relationship.
|
586 |
1,25(OH)2D3 and Initial Regulation of Smad2/3 Activity in PC-3 Prostate Cancer CellsStahel, Anette January 2009 (has links)
<p>The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this mainly through a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. Another major way in which 1,25(OH)2D3 inhibits cell growth in prostate cancer is via membrane-initiated steroid signalling, which triggers activation of signal cascades upon steroid binding to a receptor complex, leading to induction of genes regulating cell growth, proliferation and apoptosis. The main prostate cancer inhibiting membrane-initiated route is the TGFβ signalling pathway, elicited by the protein TGFβ. Two other important proteins downstream in this cascade are Smad2 and Smad3. In this study the early effects of 1,25(OH)2D3 on activated Smad2/3 levelsin PC-3 prostate cancer cells were examined. PC-3 cells were incubated for 3, 5, 10, 30 and 60 minutes as well as 38 hours both together with 1,25(OH)2D3 of the concentrations 10-10 and 10-7 M and without. Western Blots were then performed on supernatants from the cells treated followed by treatment of the membranes with primary antibodies against phosphorylated Smad2/3 C-terminal linker regions, alkaline phosphatase conjugated secondary antibodies and finally visualization with BCIP/ NBT tablets. As the downstream cascade protein JNK is a proposed activator of Smad2/3, this procedure was also repeated with a JNK inhibitor. This is a follow-up to an earlier study which examined the influence of 1,25(OH)2D3 on TGFβ levels using the same doses and time points and which found that 1,25(OH)2D3 initially lowered the level of active TGFβ, then increased it. The results of this study indicated a 1,25(OH)2D3 mediated induction of the same pattern in the levels of active Smad2 and 3, both with and without JNK inhibitor. The results did not indicate that 1,25(OH)2D3 activates the Smad2/3 C-terminal linker region via the JNK pathway.</p>
|
587 |
Effects of 1,25(OH)2D3 on Smad2 Activity in PC-3 Prostate Cancer CellsStahel, Anette January 2009 (has links)
<p>The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this mainly through a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. Another major way inwhich 1,25(OH)2D3 inhibits cell growth in prostate cancer is via membrane-initiated steroid signalling, which triggers activation of signal cascades upon steroid binding to a receptor complex, leading to induction of genes regulating cell growth, proliferation and apoptosis. The main prostate cancer inhibiting membrane-initiated route is the TGFβ signalling pathway, elicited by the protein TGFβ. Another important protein downstream in this cascade is Smad2. In this study the early effects of 1,25(OH)2D3 on activated Smad2 levels in PC-3 prostate cancer cells were examined. PC-3 cells were incubated for 5, 10, 30 and 60 minutes as well as 24 and 40 hours both together with 1,25(OH)2D3 of the concentrations 10-10 and 107 M and without. An ELISA assay scanning for activated Smad2 was then performed on supernatants from both treated and untreated cells. This is a follow-up to an earlier study which examined the influence of 1,25(OH)2D3 on TGFβ levels using the same doses and similar time points and which found that 1,25(OH)2D3 initially lowered the level of active TGFβ, then increased it. The results of this study showed a statistically insignificant, time delayed 1,25(OH)2D3 mediated induction of the same pattern in the levels of active Smad2.</p> / Project Work in Biomedicine, Advanced Level, 7.5 ECTS
|
588 |
Livskvalitet efter en prostatektomi : - En litteraturöversikt / Quality of life after prostatectomy : - A litterature studyDarwich, George, Johansson, Linda January 2010 (has links)
<p>Prostatacancer är den vanligaste cancerformen i Sverige som kan behandlas med en prostatektomi där prostatan opereras bort. Denna operation medför risker för sidoeffekter vilket kan påverka mannens livskvalitet. Det förekommer flera olika mätinstrument för att mäta livskvalitet. Syftet var att beskriva faktorer som kan påverka livskvalitet hos män med prostatacancer som genomgått en prostatektomi. Metoden var en litteraturöversikt baserad på kvantitativ inriktning. Fjorton artiklar togs fram till studien med hjälp av databasen Cinahl. Alla inkluderade artiklar hade någon form av etiskt ställningstagande. Kategorier som skapades var: fysiska faktorer, psykologiska faktorer och sociala faktorer. Resultatet visar att fysiska, psykologiska och sociala faktorer kan försämras efter en prostatektomi och kan påverka männens livskvalitet. Slutsatserna var att främst urinfunktionen och den sexuella förmågan försämras vid en prostatektomi. Studien ger kunskaper till omvårdnadspersonal om hur en prostatektomi kan påverka patientens livskvalitet för att de på så vis ska kunna ge ett bättre bemötande till denna patientgrupp. Omvårdnadspersonal bör undervisa och informera patienten om troliga sidoeffekter en prostatektomi kan medföra innan behandlingen påbörjats.</p> / <p>Prostate cancer is the most common cancer in Sweden and can be treated with a prostatectomy where the prostate is surgically removed. This operation entails risks for side effects which may affect the man's quality of life. There are several different instruments to measure quality of life. The aim was to describe the factors that can affect quality of life in men with prostate cancer who have undergone prostatectomy. The method was a literature study based on a quantitative approach. Fourteen articles for the study were found using the Cinahl database. All included articles had some sort of ethical stance. Categories that were created were: physical factors, psychological factors and social factors. The results indicate that the physical, psychological and social factors diminish after a prostatectomy, and thus affect the quality of life. The conclusions were that mainly the urinary function and the sexual ability declines at a prostatectomy. The study provides knowledge to nursing staff about how a prostatectomy may affect the patient's quality of life to be able to give a better treatment to this population. Nursing staff should educate and inform the patient of likely side-impact a prostatectomy can cause before beginning treatment.</p>
|
589 |
Molecular mechanisms for activation of non-canonical TGFβ pathways and their importance during prostate cancer progressionHamidi, Anahita January 2015 (has links)
Prostate cancer is the most common invasive cancer diagnosed in men and a major and growing health problem in Western countries. Deregulation of different pathways has been implicated in progression of prostate cancer, namely nuclear factor kappa enhancer binding protein (NF-κB), transforming growth factor β (TGFβ), phosphoinositide 3ʹ-kinase/AKT (PI3K/AKT) and Src kinase pathways. However, the detailed mechanisms by which TGFβ activates these pathways to contribute in tumorigenesis and invasive behavior of prostate cancer cells have not been elucidated. We have demonstrated (paper I) that the E3 ligase activity of TRAF6 is crucial for recruitment of the regulatory subunit of PI3K, p85α, to TβRI and for TGFβ-induced Lys63-linked polyubiquitination of p85α. TRAF6 is required for the TGFβ-induced recruitment of AKT to the complex of PI3K and TβRI, where the polyubiquitination and activation of AKT occurs. When activated, AKT promotes TGFβ-induced cell migration which is dependent on p85 and PI3K activity, as well as on TRAF6, but not on TβRI kinase activity. Thus, TGFβ-induced activation of PI3K/AKT induces cell motility contributing to the progression of cancer. We have demonstrated (paper II) a pivotal role of TAK1 polyubiquitination in three different pathways, including TNFR, IL-1R, and TLR4 signaling. Lys63-linked polyubiquitination of TAK1 at Lys34 is essential for downstream signaling to NF-κB-mediated target gene expression in both cancer and immune cells. These findings are of importance for the understanding of the mechanism of activation of NF-κB in inflammation and may aid in the development of new therapeutic strategies to treat chronic inflammation and cancer. We have also shown (paper III) that TGFβ activates the tyrosine kinase Src via formation of a complex between TβRI and Src. The E3 ligase TRAF6 promotes the formation of the complex in a manner not dependent on its ubiquitin ligase activity, suggesting that TRAF6 acts as an adaptor. Moreover, the activation of Src is not dependent on the kinase activity of TβRI. On a functional level, Src activity was found to be necessary for TGFβ-induced chemotaxis. In conclusion, we have elucidated molecular mechanisms whereby TGFβ activates non-Smad pathways, i.e. PI3K and Src. Our findings shed light on the pro-tumorigenesis mechanisms of TGFβ. In addition, we have demonstrated how the activation of TAK1, an important component of the TGFβ non-Smad pathway, by TGFβ and other stimuli leads to the activation of NF-κB and thereby induction of inflammation which likely contributes to prostate cancer progression.
|
590 |
Studies in anion-responsive polymers and 6-shogaol as a chemopreventive of prostate cancerSilver, Eric Scott 15 September 2015 (has links)
The study of the binding and recognition of anions has emerged as a significant branch of supramolecular chemistry over the past 20 years. Of particular interest is the binding in aqueous media of industrially or biologically relevant anions including fluoride, pyrophosphate, and terephthalate. To date, most anion recognition using synthetic systems has been accomplished with small molecule receptors operating in organic media. We believe the challenge of sensing and binding anionic species in aqueous media could be addressed through polymers. This is due to their solubility, which can be tuned by judicious selection of the appropriate polymer backbone. Further, polymers can be cross-linked (forming interchain bonds) to produce insoluble materials that are attractive for use as filter materials for liquids and gases. The polymer network can also act as a net to strip away the solvent shell of the anions, leading to increased sensitivity toward hydrated analytes. In addition, the multi-valency due to multiple binding sites in a polymer can lead to increased affinities for analytes. This dissertation details the author’s work focused on the preparation of anion receptor-containing polymers and their subsequent evaluation as both sensors for the fluoride anion and as extractants for bisanions under conditions of liquid-liquid extraction.
Chapter 1 gives a brief review of the challenges of anion binding and a primer on the field of sensing and extracting anions using polymeric systems. Chapter 2 describes our work incorporating three quinoxaline-based anion receptors into poly(methyl methacrylate) polymers and their sensing of anionic targets. Chapter 3 describes our work incorporating calix[4]pyrrole anion receptors into poly(methyl methacrylate) polymers. These polymeric systems were found to undergo reversible crosslinking in organic media when combined with certain ditopic anions. Chapter 4 describes our work to investigate chemopreventives of prostate cancer based on the phytochemicals 6-gingerol and 6-shogaol. The mechanism of action was linked to the inhibition of inflammation pathways. Derivatives of 6-shogaol were synthesized and their ability to inhibit prostate cancer cell growth was evaluated. Chapter 5 details all the syntheses and characterization data of the compounds discussed in this dissertation, as well as spectra from titrations and extraction studies. / text
|
Page generated in 0.1228 seconds