• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude théorique des phénomènes de transport intracellulaire hors-équilibre thermodynamique : rôle du couplage entre transport actif et diffusif en volume confiné. / Theoretical study of intracellular transport phenomena out of thermodynamic equilibrium : the role of the coupling between active transportation and diffusion in a confined volume.

Dauloudet, Olivier 15 December 2015 (has links)
Comment les cellules eucaryotes remodèlent constamment leur espace intracellulaire est l'un des phénomènes auto-organisés les plus étonnants dans la nature. Pour ce faire, ces cellules exploitent la diffusion brownienne des macromolécules et cargos sur de petites échelles d’espace combinée avec des phénomènes de transport actif le long des filaments du cytosquelette entraînées par des protéines motrices.Malgré l'effort important de la communauté physico-mathématique sur ces problématiques biologiques, il est encore très difficile de rationaliser le mouvement des organites (et en général de la matière) à l'intérieur de la cellule.Dans cette thèse, nous abordons ce problème en généralisant l'analyse théorique d'un modèle physico-mathématique paradigmatique du transport hors-équilibre de protéines motrices (appelé TASEP) afin d'étudier l'impact d'un volume fini et d’une concentration finie de moteurs sur leur distribution dans le cytosol et le long du cytosquelette. En particulier, cela nécessite d'inventer une nouvelle méthodologie afin de résoudre ce problème où le mouvement de diffusion des moteurs dans le cytoplasme est couplé avec le transport collectif et dirigé de ces mêmes moteurs le long d'un ou plusieurs filaments du cytosquelette. De nouveaux phénomènes et régimes intéressants apparaissent par rapport aux études récentes apparus dans la littérature. En outre, la méthodologie développée ici, permet une analyse rapide et efficace des comportements de ces systèmes complexes pour lesquels la simulation numérique peut être longue en temps.La thèse est organisée comme suit. Le premier chapitre est consacré à l’introduction au sujet et à la définition des notions biologiques et physiques nécessaires pour le travail de recherche présenté ensuite.Le deuxième chapitre aborde une solution approchée pour le cas de transport réalisé sur un seul filament cytosquelettique plongé dans le cytosol, où le volume fini et la concentration finie de moteurs modifient qualitativement et quantitativement les diagrammes de phase décrivant la densité moyenne et le flux de moteurs le long du filament. Nous discutons ensuite les conditions physiques pour lesquels cette solution approchée n’est plus valable. Pour surmonter cette difficulté, dans le chapitre trois, nous décrivons une nouvelle méthode, inspirée par la « méthode des images » pour calculer les solutions de l'équation de Poisson en électrostatique, qui permet pour la première fois (à notre connaissance) de calculer analytiquement la distribution de moteurs qui diffusent en volume, c.à.d. le cytosol, sans aucune hypothèse d’approximation. En particulier, le procédé peut être facilement généralisé à tout type de distribution ou réseau de filaments et à plusieurs mécanismes de transport collectif le long des filaments. Cela permet d’explorer ainsi des régimes et des phénomènes nouveaux qui peuvent difficilement être étudiées par des simulations stochastiques en raison de la complexité des processus et de l'extension spatiale du système. Le chapitre quatre se concentre sur cette méthodologie innovante de calcul. Le chapitre cinq discute d’une variété de problèmes ouverts ainsi que d’ouvertures liées au thème étudié. Nous terminons cette thèse avec des conclusions générales se concentrant sur les implications physiques, biophysiques et biologiques de l’étude effectué.Les nombreux résultats obtenus ont un impact sur notre compréhension générale des processus de transport complexe, collectif et non-linéaire dans des phénomènes et situations où les moteurs peuvent se déplacer parmi des espaces avec des différentes dimensions physiques, avec des implications intéressantes pour la biologie, la mécanique statistique des systèmes hors-équilibre thermodynamique, de la théorie physico-mathématique du trafic et de la logistique. / How cells constantly remodel their intracellular space is one of the most astonishing self-organized phenomena in Nature. In order to do that, eukaryotic cells exploit the Brownian diffusion of macromolecules or organelles on small scales combined with active transport phenomena along cytoskeletal filament driven by motor proteins. Despite the important effort in the physico-mathematical community working on these biological issues, it is still very difficult to rationalize the motion of organelles (and in general of matter) inside the cell. In this thesis, we approach this problem by generalizing the theoretical analysis of a paradigmatic physico-mathematical model of non-equilibrium transport of motor proteins (called TASEP) to study the impact that a finite volume and a finite concentration of transporters have on their distribution in the cytosol and along the cytoskeleton. In particular, this requires inventing a new methodology in order to solve the problem where diffusive motion or transporters in the cytoplasm is coupled with directed collective transport along one or many cytoskeletal filaments. New interesting phenomena and regimes appear with respect to recent studies in literature. Moreover, the methodology developed so far, allow a fast and efficient investigation of complex systems behaviors for which numerical simulation can result very time consuming.The thesis is organized as follows. The first chapter is dedicated to an introduction on the topic and to the definition of biological and physical notions necessary for the research work presented. The second chapter tackles an approximate solution for the case of directed transport on a single cytoskeletal filament embedded in the cytosol, where the finite volume and the finite concentration of particles modify qualitatively and quantitatively the phase diagrams describing the average density and flux of transporters along the filament. We then discuss the physical conditions for which this approximated solution is no more valid. In order to overcome this difficulty, in chapter three we describe a novel method, inspired by the “images-method” to compute solutions of the Poisson equation in electrostatics, which allows for the first time (at our knowledge) to compute analytically the distribution of transporters in volume, i.e. the cytosol, without any approximated assumption. Importantly, the method can be easily generalized to any kind distribution or network of filaments and to other mechanisms of collective transport along the filaments. This makes possible to explore stationary regimes and new phenomena that can be hardly studied by stochastic simulations due to the complexity of the processes and the spatial extension of the system. Chapter four focuses on the innovative methodology of computation. Chapter five discusses miscellanea of problems and openings related to the topic studied. We end this thesis with general conclusions focusing on physical, biophysical and biological implications.The various results obtained have an impact on our general understanding on complex, collective and non-linear transport processes in situations and phenomena where transporters can move in spaces with different physical dimensions with interesting implications for biology, non-equilibrium statistical mechanics and the physico-mathematical theory of traffic and logistics.
2

Fonction cellulaire de la HNRNP A1B, une isoforme plus longue de HNRNPA1, qui est régulée à la hausse dans la SLA/DFT

Llasera Ballester García, Mariana 10 1900 (has links)
Les protéines de liaison à l'ARN (PLA) s'assemblent en complexes cytoplasmiques avec les ARNm pour contrôler la traduction locale des ARNm et le transport axonal. Ces processus sont essentiels au maintien de la survie des neurones et leur déficience est impliquée dans le développement de nombreuses maladies neurodégénératives, telles que la SLA. Il a été montré ultérieurement que la déplétion nucléaire de TDP-43, liée à la SLA, entraîne l'accumulation d'une variante épissée alternativement de la ribonucléoprotéine nucléaire hétérogène A1 (hnRNP A1). Cette isoforme, appelée hnRNP A1B, possède une région désordonnée (RID) et, dans le contexte neuronal, localise dans les neurites et dans le noyau, alors que la hnRNP A1 localise majoritairement dans le noyau. Ceci appui l'hypothèse que la hnRNP A1B peut avoir une fonction cytosolique dans les neurones qui n'est pas partagée avec la hnRNP A1. En outre, les hnRNP A1 et hnRNP A1B sont mutées dans de rares cas de SLA familiale, dont certaines mutations sont spécifiques à la hnRNP A1B. Jusqu'à présent, la littérature se concentre sur l'isoforme hnRNPA1 tandis que peu est répertorié sur la fonction de la hnRNP A1B. Ainsi, cette étude vise à déterminer et caractériser la fonction cytosolique de la hnRNP A1B dans les neurones. Puisque très peu est répertorié sur la hnRNP A1B, il a fallu tout d’abord déterminer des partenaires d’interaction. Ainsi, une immunoprécipitation utilisant un anticorps spécifique à la hnRNP A1B suivi d'une spectrométrie de masse (IP-MS) a été réalisée sur la moelle épinière de souris. Les résultats soulèvent que de nombreux interacteurs de la hnRNP A1B sont associés au trafic intracellulaire dépendant du cytosquelette. Les interactions avec KLC1/KIF5C/Myh9/DyncIHI ont été validées par des tests d'immunoprécipitation et de colocalisation. Aussi, l’impact de certains mutants hnRNP A1B associés à la SLA ont été étudiées au niveau des interactions avec les protéines motrices. Des expériences visant à évaluer comment la hnRNP A1B peut être transportée, ainsi que réguler le transport, sont en cours. Les résultats confirment que la hnRNP A1B peut avoir une fonction cytosolique dans les neurones pour le transport axonal/dendritique de l'ARNm. Des études futures exploreront cette nouvelle fonction dans le contexte de la SLA. / RNA-binding proteins (RBPs) assemble into cytoplasmic complexes with mRNAs to control mRNA local translation and axonal transport. These processes are essential for maintaining neuronal survival and their impairment is implicated in the development of many neurodegenerative diseases, such as ALS. We have discovered that TDP-43 depletion, linked to ALS, drives the accumulation of an alternatively spliced variant of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). This isoform, termed hnRNP A1B, has an elongated prion-like domain (PrLD) and is present in neuronal processes, while hnRNP A1 is not. This finding supports a hypothesis that hnRNP A1B may have a cytosolic function in neurons that is not shared with hnRNP A1. In addition, hnRNP A1 and hnRNP A1B are mutated in rare cases of familial ALS with some mutations specific to hnRNP A1B. To date, the literature has mostly focused on the hnRNPA1 isoform and little is known about hnRNP A1B function. Thus, this study aims to identify and characterize the cytosolic function of hnRNP A1B in neurons. Since very little is known about hnRNP A1B, it was first necessary to identify interaction partners of the protein. Thus, immunoprecipitation using an antibody specific to hnRNP A1B followed by mass spectrometry (IP-MS) was performed on mouse spinal cord. Our results show that many hnRNP A1B interactors are associated with cytoskeletal-dependent intracellular trafficking. We then proceed to validate the interactions with the motor proteins KLC1/KIF5C/Myh9, by immunoprecipitation and proximity ligation assays. In addition, some hnRNP A1B ALS mutants were studied in the context of these interactions. Experiments to evaluate how hnRNP A1B may be transported, as well as regulate transport are currently underway. Our findings support that hnRNP A1B may have a cytosolic function in neurons in mRNA axonal/dendritic transport. Future studies will explore this novel function in the ALS context.
3

Kinesin-13, tubulins and their new roles in DNA damage repair

Paydar, Mohammadjavad 12 1900 (has links)
Les microtubules sont de longs polymères cylindriques de la protéine α, β tubuline, utilisés dans les cellules pour construire le cytosquelette, le fuseau mitotique et les axonèmes. Ces polymères creux sont cruciaux pour de nombreuses fonctions cellulaires, y compris le transport intracellulaire et la ségrégation chromosomique pendant la division cellulaire. Au fur et à mesure que les cellules se développent, se divisent et se différencient, les microtubules passent par un processus, appelé instabilité dynamique, ce qui signifie qu’ils basculent constamment entre les états de croissance et de rétrécissement. Cette caractéristique conservée et fondamentale des microtubules est étroitement régulée par des familles de protéines associées aux microtubules. Les protéines de kinésine-13 sont une famille de facteurs régulateurs de microtubules qui dépolymérisent catalytiquement les extrémités des microtubules. Cette thèse traite d’abord des concepts mécanistiques sur le cycle catalytique de la kinésine-13. Afin de mieux comprendre le mécanisme moléculaire par lequel les protéines de kinésine-13 induisent la dépolymérisation des microtubules, nous rapportons la structure cristalline d’un monomère de kinésine-13 catalytiquement actif (Kif2A) en complexe avec deux hétérodimères αβ-tubuline courbés dans un réseau tête-à-queue. Nous démontrons également l’importance du « cou » spécifique à la classe de kinésine-13 dans la dépolymérisation catalytique des microtubules. Ensuite, nous avons cherché à fournir la base moléculaire de l’hydrolyse tubuline-guanosine triphosphate (GTP) et son rôle dans la dynamique des microtubules. Dans le modèle que nous présentons ici, l’hydrolyse tubuline-GTP pourrait être déclenchée par les changements conformationnels induits par les protéines kinésine-13 ou par l’agent chimique stabilisant paclitaxel. Nous fournissons également des preuves biochimiques montrant que les changements conformationnels des dimères de tubuline précèdent le renouvellement de la tubuline-GTP, ce qui indique que ce processus est déclenché mécaniquement. Ensuite, nous avons identifié la kinésine de microtubule Kif2C comme une protéine associée à des modèles d’ADN imitant la rupture double brin (DSB) et à d’autres protéines de réparation DSB connues dans les extraits d’œufs de Xenope et les cellules de mammifères. Les cassures double brin d’ADN (DSB) sont un type majeur de lésions d’ADN ayant les effets les plus cytotoxiques. En raison de leurs graves impacts sur la survie cellulaire et la stabilité génomique, les DSB d’ADN sont liés à de nombreuses maladies humaines, y compris le cancer. Nous avons constaté que les activités PARP et ATM étaient toutes deux nécessaires pour le recrutement de Kif2C sur les sites de réparation de l’ADN. Kif2C knockout ou inhibition de son activité de dépolymérisation des microtubules a conduit à l’hypersensibilité des dommages à l’ADN et à une réduction de la réparation du DSB via la jonction terminale non homologue et la recombinaison homologue. Dans l’ensemble, notre modèle suggère que les protéines de kinésine-13 peuvent interagir avec les dimères de tubuline aux extrémités microtubules et modifier leurs conformations, moduler l’étendue des extrêmités tubuline-GTP dans les cellules et déclencher le désassemblage des microtubules. Ces deux modèles pourraient être des clés pour démêler les mécanismes impliqués dans le nouveau rôle de Kif2C dans la réparation de l’ADN DSB sans s’associer à des polymères de microtubules. / Microtubules are long, cylindrical polymers of the proteins α, β tubulin, used in cells to construct the cytoskeleton, the mitotic spindle and axonemes. These hollow polymers are crucial for many cellular functions including intracellular transport and chromosome segregation during cell division. As cells grow, divide, and differentiate, microtubules go through a process, called dynamic instability, which means they constantly switch between growth and shrinkage states. This conserved and fundamental feature of microtubules is tightly regulated by families of microtubule-associated proteins (MAPs). Kinesin-13 proteins are a family of microtubule regulatory factors that catalytically depolymerize microtubule ends. This thesis first discusses mechanistic insights into the catalytic cycle of kinesin-13. In order to better understand the molecular mechanism by which kinesin-13 proteins induce microtubule depolymerization, we report the crystal structure of a catalytically active kinesin-13 monomer (Kif2A) in complex with two bent αβ-tubulin heterodimers in a head-to-tail array. We also demonstrate the importance of the kinesin-13 class-specific “neck” in modulating Adenosine triphosphate (ATP) turnover and catalytic depolymerization of microtubules. Then, we aimed to provide the molecular basis for tubulin-Guanosine triphosphate (GTP) hydrolysis and its role in microtubule dynamics. Although it has been known for decades that tubulin-GTP turnover is linked to microtubule dynamics, its precise role in the process and how it is driven are now well understood. In the model we are presenting here, tubulin-GTP hydrolysis could be triggered via the conformational changes induced by kinesin-13 proteins or by the stabilizing chemical agent paclitaxel. We also provide biochemical evidence showing that conformational changes of tubulin dimers precedes the tubulin-GTP turnover, which indicates that this process is triggered mechanically. Next, we identified microtubule kinesin Kif2C as a protein associated with double strand break (DSB)-mimicking DNA templates and other known DSB repair proteins in Xenopus egg extracts and mammalian cells. DNA double strand breaks (DSBs) are a major type of DNA lesions with the most cytotoxic effects. Due to their sever impacts on cell survival and genomic stability, DNA DSBs are related to many human diseases including cancer. Here we found that PARP and ATM activities were both required for the recruitment of Kif2C to DNA repair sites. Kif2C knockdown/knockout or inhibition of its microtubule depolymerizing activity led to accumulation of endogenous DNA damage, DNA damage hypersensitivity, and reduced DSB repair via both non-homologous end-joining (NHEJ) and homologous recombination (HR). Interestingly, genetic depletion of KIF2C, or inhibition of its microtubule depolymerase activity, reduced the mobility of DSBs, impaired the formation of DNA damage foci, and decreased the occurrence of foci fusion and resolution. Altogether, our findings shed light on the mechanisms involved in kinesin-13 catalyzed microtubule depolymerization. Our tubulin-GTP hydrolysis model suggests that kinesin-13 proteins may interact with tubulin dimers at microtubules ends and alter their conformations, modulate the extent of the GTP caps in cells and trigger microtubule disassembly. These two models could be keys to unravel the mechanisms involved in the novel role of Kif2C in DNA DSB repair without associating with microtubule polymers.

Page generated in 0.0917 seconds