1 |
Structural determinants of substrate oxidation by horseradish peroxidase isoenzyme CWhite, Christopher George January 1998 (has links)
No description available.
|
2 |
Studies of a deuterated protein (Fyn SH3) and of protein side chain interactions using high resolution NMRMal, Tapas Kumar January 1998 (has links)
No description available.
|
3 |
Structural studies of lipoxygenases from legumesShree, Roopa S 03 1900 (has links)
Lipoxygenases from legumes
|
4 |
Biology of the CD52 antigen, a major glycoprotein of human lymphocytesTaylor, Vanessa Claire January 1995 (has links)
No description available.
|
5 |
NMR studies of oxidative phosphorylationCarr, M. D. January 1987 (has links)
No description available.
|
6 |
Site Directed Immobilization of BMP-2: Two Approaches for the Production of Osteoinductive Scaffolds / Gerichtete Immobilisierung von BMP-2: Zwei Ansätze zur Herstellung osteogener TrägerstrukturenTabisz, Barbara January 2017 (has links) (PDF)
Bone fractures typically heal without surgical intervention. However, pathological situations exist which impede the healing process resulting in so-called non-union fractures. Such fractures are nowadays treated with scaffold material being introduced into the defect area. These scaffolds can be doped with osteogenic factors, such as bone morphogenetic protein (BMP)2. BMP2 belongs to the most osteogenic growth factors known to date. Its medical use, efficiency and safety have been approved by FDA for certain applications. Currently, BMP2 is distributed with a stabilizing scaffold, which is simply soaked with the growth factor. Due to fast release kinetics supraphysiological high doses of BMP2 are required which are causally associated with severe side effects observed in certain applications being most harmful in the area of the cervical spine. These side-effects include inflammation, swelling and breathing problems, leading to disastrous consequences or secondary surgical interventions. Since it could be shown that a retardation of BMP2 release from the scaffold resulted in superior bone forming properties in vivo, it seems obvious to further reduce this release to a minimum. This can be achieved by covalent coupling which in the past was already elaborated using mainly classical EDC/NHS chemistry. Using this technique coupling of the protein occurs non-site-directedly leading mainly to an unpredictable product outcome with variable osteogenic activities. In order to improve the reproducibility of scaffold functionalization by BMP2 we created variants one of which contains a unique unnatural amino acid substitution within the mature polypeptide sequence (BMP2-K3Plk) and another, BMP2-A2C, in which an N-terminal alanine has been substituted by cysteine. These modifications enable site-specific and covalent immobilization of BMP2 e.g. onto polymeric beads. Both proteins were expressed in E. coli, renatured and purified by cation-exchange chromatography. Both variants were extensively analyzed in terms of purity and biological activity which was tested by in vitro interaction analyses as well as in cell based assays. Both proteins could be successfully coupled to polymeric beads. The different BMP2 functionalized beads were shown to interact with the ectodomain of the type I receptor BMPR-IA in vitro indicating that the biological activity of both BMP2 variants retained upon coupling. Both functionalized beads induced osteogenic differentiation C2C12 cells but only of those cells which have been in close contact to the particular beads. This strongly indicates that the BMP2 variant are indeed covalently coupled and not just adsorbed.
We claim that we have developed a system for a site-specific and covalent immobilization of BMP-2 onto solid scaffolds, potentially eliminating the necessity of high-dose scaffold loading. Since immobilized proteins are protected from removal by extracellular fluids, their activities now rely mainly on the half-life of the used scaffold and the rate of proteolytic degradation. Assuming that due to prolonged times much lower loading capacities might be required we propose that the immobilization strategy employed in this work may be further refined and optimized to replace the currently used BMP2-containing medical products. / Knochenbrüche heilen typischerweise ohne die Notwendigkeit chirurgischer Eingriffe. Es gibt jedoch pathologische Situationen, in denen keine Heilung erfolgt was zur Ausbildung sogenannter non-union Frakturen führt. Solche Frakturen werden heutzutage mit Trägermaterialen versorgt, welche in die Defektzonen eingebracht werden. Diese Trägermaterialien können mit osteogen wirkenden Faktoren dotiert sein, z.B. mit bone morphogenetic protein (BMP)2. BMP2 gehört zu den am meisten osteogen wirkenden Faktoren, welche derzeit bekannt sind. Die Nutzung dieses Faktors als Medikament, wurde aufgrund seiner Effizienz und der Sicherheit in der Anwendung von der FDA für bestimmte Anwendungsgebiete zugelassen. Derzeit wird BMP2 mit einer stabilisierenden Trägerstruktur vertrieben, wobei diese einfach mit dem Wachstumsfaktor getränkt wird. Aufgrund schneller Freisetzungskinetiken werden unphysiologisch hohe Mengen von BMP2 gebraucht, welche in Beziehung zu extremen Nebeneffekten gebracht werden, die bei verschiedenen Anwendungen, speziell im Wirbelsäulenbereich, beobachtet werden konnten. Die Nebeneffekte umfassen Endzündungen, einhergehend mit Schwellungen und Atemprobleme, welche weitere Operationen nach sich ziehen können. Da bereits gezeigt werden konnte, dass eine Verzögerung der BMP2 Freisetzung aus der Trägerstruktur eine Verbesserung der osteogenen Wirkung mit sich bringt erscheint es offensichtlich, diese Freisetzung auf ein Minimum zu reduzieren. Dies kann durch kovalente Anbindung erreicht werden, was bereits in der Vergangenheit durch die Verwendung klassischer EDC/NHS Kopplungschemie versucht wurde. Bei dieser Art der Anbindung wird das Protein ungerichtet gekoppelt, was zu unvorhersagbaren Produktqualitäten mit variablen osteogenen Aktivitäten führt.
Um eine Reproduktion solcher Funktionalisierungen mit BMP2 zu ermöglichen wurden zwei BMP-2 Varianten erzeigt, wobei bei einer der Varianten eine Aminosäure im N-terminalen Teil des reifen Proteinteils gegen eine unnatürliche Aminosäure BMP2-Plk), bei der anderen ein Alanin gegen ein Cystein ausgetauscht wurde BMP2-A2C. Durch diesen Austausch wird es möglich, diese Varianten gerichtet an polymere Strukturen anzubinden. Beide Proteine wurden in E. coli exprimiert, renaturiert und mittels Kationenaustausch-Chromatographie aufgereinigt. Die resultierenden Proteinprodukte wurden intensiv bzgl. ihres Reinheitsgrades sowie ihrer biologischen Aktivität überprüft. Letzteres erfolgte sowohl durch In-vitro Interaktions-Analysen als auch durch zellbasierte Untersuchungen. Beide Proteine konnten erfolgreich an polymere Strukturen ("beads") gekoppelt werden. Es konnte gezeigt werden, dass die verschiedenen BMP2 funktionalisierten beads mit isolierten Ektodomänen des BMP Typ I Rezeptors (BMPR-IA) interagieren. Dies belegt, dass die biologische Aktivität auch nach der Kopplung erhalten bleibt. Die funktionalisierten beads induzieren die osteogene Differenzierung von C2C12 Zellen. Die Differenzierung erfolgt aber nur in jenen Zellen die im direkten Kontakt zu den beads stehen. Dies legt nahe, dass beide BMP2 Varianten wirklich kovalent gekoppelt und nicht nur adsorbiert sind.
Es kann behauptet werden, dass im Rahmen dieser Arbeit ein System entwickelt wurde, durch das eine gerichtete Immobilisierung von BMP2 an solide Oberflächen möglich ist. Dadurch können möglicherweise die notwendigen BMP2 Mengen reduziert werden, da bereits Subnanogram Mengen der gekoppelten BMP2 Varianten Osteogenese auslösen können. Da gekoppelte Proteine nicht durch interstitielle Flüssigkeiten entfernt werden können unterliegt die Fortdauer ihrer biologischen Aktivität der Halbwertszeit des verwendeten Trägermaterials, was durch die verlängerten Wirkzeiten eine Verringerung der verwendeten Wachstumsfaktormenge ermöglicht. Es wird beabsichtigt diese Kopplungsstrategie weiterzuentwickeln um die derzeit am Markt befindlichen BMP2 beinhaltenden Medizinprodukte ersetzen zu können.
|
7 |
Engineered α-hemolysin pores with chemically and genetically-fused functional proteinsMantri, Shiksha January 2013 (has links)
Protein engineering could be used to bring two proteins together, which don't normally interact, in an oriented configuration. Using computer modelling and experimental work involving mutagenesis, a new dimer complex, (α7)2, was engineered with two α-hemolysin (αHL) heptamers (α7) units linked via disulfide bridges in a cap-to-cap orientation. The structure of (α7)2 was confirmed by biochemical analysis, transmission electron microscopy (TEM) and single-channel electrical recording. Importantly, it was shown that the one of two transmembrane barrels of (α7)2 can insert into an attoliter liposome, while the other spans a planar lipid bilayer. (α7)2 pores spanning two bilayers were also observed by TEM. In potential, (α7)2 could be used for small molecule transfer between micron-sized vesicles (minimal cells) and would have applications in forming proto-tissues from minimal cells. Another target has been to couple a highly processive exonuclease, λ-exonuclease (λ-exo), which functions as a trimer, with the α7 pore for DNA sequencing and single molecule studies of λ-exo. Several genetic fusion constructs of λ-exo and αHL were screened and optimized for activity. By linking the N-terminus of λ-exo monomer to the C-terminus of the αHL monomer (α1), a new kind of processive exonuclease (AE) was synthesized that can form pores in bilayers. AE and wild-type α1 could be integrated into hetero-heptamers with different number of AE subunits. To achieve a hetero-heptamer with only one λ-exo trimer molecule mounted on the αHL cap, a concatemer of 2 λ-exo (exo3) was made by genetically linking the monomers of λ-exo with 15 and 17 amino acid linkers. The immediate next step is to link exo3 to α1 and then to co-assemble the exo3-α1 fusion construct with α1 to make the λ-exo-αHL pore complex. Using similar strategies as described in this thesis, other proteins could be linked to αHL increasing the scope of the nanopore technology.
|
8 |
Substrate recognition by the cytosolic iron sulfur cluster targeting complexMarquez, Melissa Danae 03 November 2022 (has links)
The cytosolic iron sulfur cluster assembly (CIA) pathway is responsible for the maturation of >40 cytosolic and nuclear iron sulfur (FeS) proteins critical for fundamental processes such as DNA replication, transcription, and translation. The final stages of the pathway require the CIA targeting complex, which is composed of Cia1, Cia2, and Met18. This large multiprotein complex is proposed to recognize apo-enzyme substrates and insert their FeS clusters. However, it is unclear how these substrates are identified and how the CIA targeting complex mediates cofactor insertion. In this thesis, I mapped the protein-protein interaction sites critical for formation of the CIA targeting complex and discovered the first peptide motif that is both necessary and sufficient for recognition of a subset of FeS proteins by the CIA system.
Cia1’s seventh beta-propeller blade was found to bind to Cia2, while Cia2’s fifth conserved region mainly interacts with Cia1, via an in vitro affinity co-purification assay. A quantitative MicroScale Thermophoresis assay supported these findings, in addition this approach affirmed that Cia2’s N-terminal intrinsically disordered domain and hyperreactive cysteine are dispensable for CIA targeting complex assembly. In collaboration with the Drennan Lab at MIT, Met18 was discovered to form a hexamer via cryo-EM. Met18 is proposed to arrange into a hexamer before its CIA-related function. Hexamer formation and Cia2 binding depend on Met18’s C-terminus, whereas Leu1 recognition relies on Met18’s N-terminus.
A C-terminal W motif was demonstrated as both necessary and sufficient for identification of a subset of FeS proteins by the CIA targeting complex. A bioinformatics analysis revealed roughly 20% of CIA client proteins, including substrates, factors, and adaptors, terminate in a conserved [LTQ]-[DE]-[W]-COO- motif. CIA recognition depends on the C-terminal aromatic side chain and the carboxy terminus. This tripeptide motif is also sufficient for identification by the CIA system when attached to SUMO. Moreover, a series of competition experiments showed that the CIA targeting complex contains distinct, non-overlapping binding sites for client proteins where Cia1 serves as the docking site for the C-terminal W motif. Altogether, the first recognition motif is defined for one in five of CIA client proteins. / 2024-11-03T00:00:00Z
|
9 |
Roles of oxygenases in nucleic acid modificationBagg, Eleanor Amy Louise January 2011 (has links)
2-Oxoglutarate (2OG) and Fe(II) dependent oxygenases have a broad range of substrates, extending from histones to fatty acids. Several 2OG oxygenases have nucleic acid substrates, with members of the AlkB subfamily being responsible for nucleic acid modification and repair. The AlkB protein itself is part of the Escherichia coli adaptive response, protecting the DNA from methylation damage. Methyl lesions are repaired by a direct removal mechanism via a hydroxylated intermediate, with release of formaldehyde. Homologues of AlkB have been identified throughout the vertebrates, with nine known human homologues: AlkB homologue 1-8 (ABH1-8) and Fat, mass and obesity associated protein (FTO). ABH2, ABH3 and FTO catalyse similar reactions to AlkB, whereas ABH8 methylates then hydroxylates modified wobble-position uridines in tRNA. The remaining homologues are of unknown function. The FTO gene is associated with obesity in humans, a link confirmed by mouse models; mice lacking FTO are thinner than wildtype individuals, whereas overexpression of FTO leads to increased mass. Investigation of recombinant FTO identified a novel C terminal helical domain which appears to mediate protein dimerisation in vitro. A loss of function mutation in this C terminal domain produces a lean phenotype in mice, emphasising the importance of this domain for the protein’s function in vivo. The FTO protein was further studied in cells, and localisation of several protein variant constructs were studied by immunofluorescence. Cell lysis and immunoprecipitation techniques were developed that enable proteomic analyses of proteins with which FTO may interact in cells. No protein interactors were confidently identified, suggesting that FTO may not interact with specific proteins in cells, and instead may preferentially interact with nucleic acids. Studies were initiated on two further members of the ABH family, ABH1 and ABH7. Recombinant proteins were prepared and characterised as 2OG oxygenases, however initial attempts to identify potential histone or nucleic acid substrates were not successful. Both proteins were found to be localised in the mitochondria, however proteomic analysis was unable to identify proteins interacting with either protein in cells. Selective inhibitors are required for in vivo inhibition of the ABH proteins. AlkB and ABH2 proteins were purified and characterised, and a formaldehyde dehydrogenase-coupled assay was developed to follow activity of these DNA demethylases. A dynamic combinatorial mass spectrometry method was employed to identify novel inhibitor scaffolds for AlkB, leading to the successful discovery of the first series of potent and selective inhibitors for this class of enzymes. Crystal structures of AlkB in complex with the most potent compounds were obtained, rationalising the inhibition observed. This work therefore suggests that therapeutic inhibition of this family of 2OG oxygenases is likely to be tractable.
|
10 |
Re-engineering bacterial two-component signalling systemsBlades, Gareth January 2014 (has links)
Bacteria use Two Component Systems (TCS) to sense and respond to changes in their external environment. TCS are used to navigate to nutrients or away from toxins (chemotaxis) and to adapt to changes in osmolarity (osomosensing). TCS are composed of a histidine protein kinase (HPK) which trans-autophosphorylates in response to environmental change, transferring the phosphoryl group to a cognate response regulator (RR). Phosphorylated RRs modulate an output response such as protein-protein interaction for chemotaxis, and transcription for osmosensing. RRs are composed of a conserved amino terminal REC domain, and where present a variable effector domain. CheY, the chemotaxis RR, contains only a REC domain, whilst OmpR, the osmosensing RR, also contains a DNA binding effector domain. Recently, TCS have been used in synthetic biology applications due to their modularity and conserved signalling mechanism. This thesis aimed to investigate whether it was possible to design a synthetic TCS composed of fused chemotaxis and osmosensing components. Synthetic RRs were designed, fusing the highly conserved REC domains of CheY and OmpR upstream of the OmpR effector domain. REC domains were fused across the α<sub>4</sub>-β<sub>5</sub>-α<sub>5</sub> region, a region which transmits REC domain phosphorylation into effector domain activation. Synthetic RRs were designed to undergo phosphotransfer to their fused REC domains from the chemotaxis HPK, CheA, activate the attached OmpR effector domain and bind promoter DNA. Four chimeric RRs were created, although only three were structurally viable; F2, F3 and F4. Each fusion bound CheA, and F3 and F4 bound CheA with a significantly higher affinity than CheY. The chimeric RRs could all be phosphorylated byCheA-P; F4 and F3 were phosphorylated to wild-type levels. DNA binding affinitywas investigated with fluorescence anisotropy, hosphorylated and unphosphorylated F3 could not bind promoter DNA. F2 bound promoter DNA regardless of phosphorylation state. These data indicate that phosphorylation of the F2 REC domain does not lead to activation of the effector domain. F2 is likely to be constitutively active suggesting a previously unknown role for OmpR α<sub>5</sub> as a mediator of effector domain activation. Furthermore, using a simple fusion approach to design RRs is not a viable method to create a synthetic TCS with a controllable output.
|
Page generated in 0.0686 seconds