1 |
Studies of pneumolysin, the membrane damaging toxin of Streptococcus pneumoniaeWalker, John Arthur January 1988 (has links)
A recombinant phage that produced a polypeptide possessing the characteristics of pneumolysin, the membrane damaging toxin of the pneumococcus, was isolated from a bank of pneumococcal sequences in ?gt10. Subclones carrying the pneumolysin gene in various plasmids were haemolytic regardless of the orientation of the insert. The nucleotide sequence of a 5 kb fragment carrying the pneumolysin gene was determined. An open reading frame 1413 bp long was identified that when translated encoded a polypeptide with 471 amino acids and a molecular weight 52.8 kD. The N-terminal amino acid sequence of the predicted protein was identical to that of native pneumolysin. A single cysteine residue was present at position 428 in the amino acid sequence. Comparison of the DNA and amino acid sequences of pneumolysin with streptolysin O (SLO) revealed extensive homology in the amino acid sequence. The longest region of identity was a sequence of 12 amino acids surrounding the unique cysteine. A hybrid gene consisting of the 5' region of the pneumolysin gene and the 3' end of the SLO gene was constructed. The fusion polypeptide was made in E. coli, but possessed a very low haemolytic activity. Using the technique of oligonucleotide-mediated site-directed mutagenesis, two mutant genes were constructed in which the cysteine codon was changed to either a glycine or serine codon. Modified toxins when purified from E. coli had a specific activity of about 1-2 % that of wild type pneumolysin.
|
2 |
Application of phage display to the study of toxin-receptor interactionsMcLean, Hector Alexander January 1999 (has links)
No description available.
|
3 |
Mechanisms of type VI secretion system effector transport and toxicityAhmad, Shehryar January 2021 (has links)
The type VI secretion system (T6SS) is a protein export pathway that mediates competition between Gram-negative bacteria by facilitating the injection of toxic effector proteins from attacking cells into target cells. To function properly, many T6SSs require at least one protein that possesses a proline-alanine-alanine-arginine (PAAR) domain. These PAAR domains are often found within large, multi-domain effectors that possess additional N- and C-terminal extension domains whose function in type VI secretion is not well understood. The work described herein uncovers the function of these accessory domains across multiple PAAR-containing effectors. First, I demonstrated that thousands of PAAR effectors possess N-terminal transmembrane domains (TMDs) and that these effectors require a family of molecular chaperones for stability in the cell prior to their export by the T6SS. Our findings are corroborated by co-crystal structures of chaperones in complex with the TMDs of their cognate effectors, capturing the first high-resolution structural snapshots of T6SS chaperone-effector interactions. Second, I characterize a previously undescribed prePAAR effector named Tas1. My work shows that the C-terminus of Tas1 possesses a toxin domain that pyrophosphorylates ADP and ATP to synthesize the nucleotides adenosine penta- and tetraphosphate (hereafter referred to as (p)ppApp). Delivery of Tas1 into competitor cells drives the rapid accumulation of (p)ppApp, depletion of ADP and ATP, and widespread dysregulation of essential metabolic pathways, resulting in target cell death. These findings reveal a new mechanism of interbacterial antagonism, the first characterization of a (p)ppApp synthetase and the first demonstration of a role for (p)ppApp in bacterial physiology. TMD- and toxin-containing PAAR proteins constitute a large family of over 6,000 T6SS effectors found in Gram-negative bacteria. My work on these proteins has uncovered that different regions found within effectors have distinct roles in trafficking between bacterial cells and in the growth inhibition of the target cell. / Dissertation / Doctor of Philosophy (PhD) / Bacteria constantly compete with their neighbours for resources and space. The type VI secretion system is a protein complex that facilitates competition between Gram-negative bacteria by facilitating the injection of protein toxins, also known as effectors, from attacking cells into target cells. In this work, I characterize several members of a large family of membrane protein effectors. First, I showed that these effectors require a novel family of chaperone proteins for stability and recruitment to the type VI secretion system apparatus. Second, I characterized the growth-inhibitory properties of one of these effectors in-depth and showed that it possesses a toxin domain that depletes the essential nucleotides ATP and ADP in target cells by synthesizing the nucleotides adenosine penta- and tetraphosphate, (p)ppApp. Together, these studies revealed a new mechanism for the intercellular delivery of membrane protein toxins and uncovered the first known physiological role of a (p)ppApp-synthesizing enzyme in bacteria.
|
4 |
Discovery and Characterization of Novel ADP-Ribosylating ToxinsFieldhouse, Robert John 20 December 2011 (has links)
This thesis is an investigation of novel mono-ADP-ribosylating toxins. In the current data-rich era, making the leap from sequence data to knowledge is a task that requires an elegant bioinformatics toolset to pinpoint questions. A strategy to expand important protein-family knowledge is required, particularly in cases in which primary sequence identity is low but structural conservation is high. For example, the mono-ADP-ribosylating toxins fit these criteria and several approaches have been used to accelerate the discovery of new family members. A newly developed tactic for detecting remote members of this family -- in which fold recognition dominates -- reduces reliance on sequence similarity and advances us toward a true structure-based protein-family expansion methodology. Chelt, a cholera-like toxin from Vibrio cholerae, and Certhrax, an anthrax-like toxin from Bacillus cereus, are among six new bacterial protein toxins identified and characterized using in silico and cell-based techniques. Medically relevant toxins from Mycobacterium avium and Enterococcus faecalis were also uncovered. Agriculturally relevant toxins were found in Photorhabdus luminescens and Vibrio splendidus. Computer software was used to build models and analyze each new toxin to understand features including: structure, secretion, cell entry, activation, NAD+ substrate binding, intracellular target binding and the reaction mechanism. Yeast-based activity tests have since confirmed activity. Vibrio cholerae produces cholix – a potent protein toxin of particular interest that has diphthamide-specific ADP-ribosyltransferase activity against eukaryotic elongation factor 2. Here we present a 2.1Å apo X-ray structure as well as a 1.8Å X-ray structure of cholix in complex with its natural substrate, nicotinamide adenine dinucleotide (NAD+). Hallmark catalytic residues were substituted and analyzed both for NAD+ binding and ADP-ribosyltransferase activity using a fluorescence-based assay. These new toxins serve as a reference for ongoing inhibitor development for this important class of virulence factors. In addition to using toxins as targets for antivirulence compounds, they can be used to make vaccines and new cancer therapies. / Natural Sciences and Engineering Research Council (CGS-D), Canadian Institutes of Health Research, Cystic Fibrosis Canada, Human Frontier Science Program, Ontario government (OGSST), University of Guelph (Graduate Research Scholarship)
|
Page generated in 0.0525 seconds