• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Type VIIb secretion system effector export and neutralization / Mechanistic insights into type VIIb secretion system effector export and neutralization

Klein, Timothy 11 1900 (has links)
The type VII secretion system is a protein export pathway linked to diverse phenotypes in both Actinobacteria and Firmicutes. The Actinobacterial subtype of the T7SS, referred to as T7SSa, has been shown to play a critical role in various aspects of Mycobacterial life including virulence, conjugation, and metal homeostasis. The T7SSb of Firmicutes bacteria on the other hand has similarly been shown to influence virulence but by the direct growth inhibition of competitor bacteria. Structure-function analyses of the T7SSa apparatus as well as various effectors and chaperones have begun to build a more mechanistic understanding of how T7SSa functions. In contrast, we know little of how the T7SSb functions despite its noted importance to both pathogens and environmental bacteria such as Bacillus, Staphylococcus, Enterococcus, and Streptococcus. During my thesis work, I have addressed several gaps in our understanding of T7SSb function. The three major questions that I have studied are: (1) how do T7SSb immunity proteins inhibit the toxicity of their cognate toxins, (2) how does the T7SSb export effectors through the thick Gram-positive cell wall, and (3) what is the role of chaperone proteins in facilitating T7SSb effector export? / Thesis / Doctor of Philosophy (PhD) / Bacteria require space and various nutrients to survive and grow and must therefore compete against other bacteria for access to these resources. To gain advantage over their competitors, many bacteria have developed molecular weapons that target and kill other closely related bacteria. Some of these weapons take the form of protein secretion machines that export antibacterial toxins. Gram-positive bacteria use the type VIIb secretion system (T7SSb) to inhibit the growth of other Gram-positive bacteria. In this work, I explore several aspects of T7SSb including: (1) how toxins are inhibited by immunity proteins, (2) how toxins are secreted through the cell envelope, and (3) how toxins are recognized by the secretion apparatus. The goal of this work is to better understand how T7SSb functions at the molecular level.
2

Mechanisms of type VI secretion system effector transport and toxicity

Ahmad, Shehryar January 2021 (has links)
The type VI secretion system (T6SS) is a protein export pathway that mediates competition between Gram-negative bacteria by facilitating the injection of toxic effector proteins from attacking cells into target cells. To function properly, many T6SSs require at least one protein that possesses a proline-alanine-alanine-arginine (PAAR) domain. These PAAR domains are often found within large, multi-domain effectors that possess additional N- and C-terminal extension domains whose function in type VI secretion is not well understood. The work described herein uncovers the function of these accessory domains across multiple PAAR-containing effectors. First, I demonstrated that thousands of PAAR effectors possess N-terminal transmembrane domains (TMDs) and that these effectors require a family of molecular chaperones for stability in the cell prior to their export by the T6SS. Our findings are corroborated by co-crystal structures of chaperones in complex with the TMDs of their cognate effectors, capturing the first high-resolution structural snapshots of T6SS chaperone-effector interactions. Second, I characterize a previously undescribed prePAAR effector named Tas1. My work shows that the C-terminus of Tas1 possesses a toxin domain that pyrophosphorylates ADP and ATP to synthesize the nucleotides adenosine penta- and tetraphosphate (hereafter referred to as (p)ppApp). Delivery of Tas1 into competitor cells drives the rapid accumulation of (p)ppApp, depletion of ADP and ATP, and widespread dysregulation of essential metabolic pathways, resulting in target cell death. These findings reveal a new mechanism of interbacterial antagonism, the first characterization of a (p)ppApp synthetase and the first demonstration of a role for (p)ppApp in bacterial physiology. TMD- and toxin-containing PAAR proteins constitute a large family of over 6,000 T6SS effectors found in Gram-negative bacteria. My work on these proteins has uncovered that different regions found within effectors have distinct roles in trafficking between bacterial cells and in the growth inhibition of the target cell. / Dissertation / Doctor of Philosophy (PhD) / Bacteria constantly compete with their neighbours for resources and space. The type VI secretion system is a protein complex that facilitates competition between Gram-negative bacteria by facilitating the injection of protein toxins, also known as effectors, from attacking cells into target cells. In this work, I characterize several members of a large family of membrane protein effectors. First, I showed that these effectors require a novel family of chaperone proteins for stability and recruitment to the type VI secretion system apparatus. Second, I characterized the growth-inhibitory properties of one of these effectors in-depth and showed that it possesses a toxin domain that depletes the essential nucleotides ATP and ADP in target cells by synthesizing the nucleotides adenosine penta- and tetraphosphate, (p)ppApp. Together, these studies revealed a new mechanism for the intercellular delivery of membrane protein toxins and uncovered the first known physiological role of a (p)ppApp-synthesizing enzyme in bacteria.
3

Biogenesis and membrane anchoring of the Type VI secretion contractile tail

Zoued, Abdelrahim 07 December 2015 (has links)
Récemment, le système de sécrétion de type VI (SST6) a été identifié comme un nouvel acteur clé dans la compétition inter-bactérienne parmi le large arsenal dont dispose les bactéries. L’une des particularités du SST6 est de cibler à la fois des cellules eucaryotes et procaryotes. Le T6SS est un complexe protéique formé par l’assemblage de deux ‘sous-complexes’. Le premier sert à l’ancrage de la machinerie au sein de l’enveloppe bactérienne et le second agit comme une arbalète moléculaire. Le mécanisme d’action du SST6 est très similaire à celui d’autres machineries contractiles telles que celui des bactériophages : la contraction d’un fourreau propulse une flèche, composée d’un tube avec une aiguille à son extrémité, directement dans la cellule cible afin de délivrer les différentes toxines. Mon projet de thèse consiste à comprendre quelles sont la structure et la biogénèse des deux différents complexes et de comprendre comment ils sont assemblés. Nous utilisons comme modèle la bactérie pathogène à Gram négatif Escherichia coli entéroagrégative. J’ai pu démontrer que le complexe membranaire est assemblé en premier, avec l’adressage de la lipoprotéine de membrane externe TssJ, puis le recrutement séquentiel de TssM et TssL, deux protéines de membrane interne. Le complexe membranaire recrute ensuite une plateforme d’assemblage, appelée ‘baseplate’. Nous avons identifié et caractérisé les composants de cette ‘baseplate’ qui sert de plateforme d’assemblage pour le recrutement du reste de la machinerie (fourreau et flèche). Enfin, nous avons identifié et déterminé le rôle de la protéine TssA, une protéine qui coordonne la polymérisation du fourreau et de la flèche. / Among the broad weaponry of bacteria, the recently identified type VI secretion system (T6SS) emerges as one of the key player in bacterial competition. T6SS is a versatile machinery that targets both eukaryotic and prokaryotic cells. This molecular weapon assembles two evolutionarily different sub-assemblies. One complex anchors the machinery to the cell envelope while the second acts as a molecular crossbow. The mechanism of action of the T6SS is similar to other known contractile machineries such as bacteriophages: the contraction of a sheath propels an arrow, constituted of a tail tube capped by a cell-puncturing device, directly into the prey cell to deliver effector toxins. My Ph.D project was to provide mechanistic details on the structure and biogenesis of the two T6SS sub-complexes and to understand how they are connected, using entero-aggregative Escherichia coli as model bacterium. I have demonstrated that the membrane complex is assembled first and starts with the positioning of the outer membrane TssJ lipoprotein and proceeds inward, from the outer to the inner membrane, through the sequential recruitment of the TssM and TssL subunits. After assembly, the membrane complex recruits an assembly platform called the baseplate. We identified and characterized the components of this baseplate, which serves as assembly platform for the tail. We further demonstrated that the functional and physical interaction between the T6SS membrane complex and the baseplate is mediated by multiple contacts. Finally, we identified and deciphered the role of TssA, a protein that coordinates the polymerizations of the tail tube and sheath.

Page generated in 0.1558 seconds