• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Motif-based evidence for a link between a plastid translocon substrate and rhomboid proteases

POWLES, Joshua 31 May 2010 (has links)
Of the organisms with sequenced genomes, plants appear to possess the most rhomboid protease-encoding genes. However, our knowledge of processes in plants that involve Regulated Intramembrane Proteolysis (RIP) and rhomboid proteases remains low. As expressed recently by other researchers, finding a natural substrate for a rhomboid protease represents the biggest experimental challenge. Using yeast mitochondria-based assays, a potential link between the plastid translocon component Tic40 and organellar rhomboid proteases was recently uncovered. In this particular link, rhomboid proteases appear capable of influencing the pattern of imported Tic40 in yeast mitochondria. Tic40 may thus represent a natural plant target of organellar rhomboid proteases. Here, we obtained further motif-oriented evidence supporting Tic40 as a natural plant rhomboid substrate. A comparative analysis of sequences revealed that Tic40 may also possess similar TMD motifs found in the model substrate, Spitz. Rhomboid proteases often require these motifs to cleave substrates within intramembrane environments. Using site-directed mutagenesis and yeast mitochondria assays, the impact of mutations occurring in the motifs ASISS, GV, QP, and GVGVG of Tic40 was assessed. In terms of cleavage and changing the pattern of imported Tic40, some of the mutations showed decreased activities and a few showed enhancements. More importantly, the overall observed pattern associated with select Tic40 mutations resembled the characteristics reported for the model substrates. In particular, mutations in the Tic40 GV motif produced similar results as that observed with Spitz, by drastically decreasing or increasing cleavage as a function of amino acid sequence. / Thesis (Master, Biology) -- Queen's University, 2010-05-30 10:22:07.72
2

Characterization of Protein-Metabolite and Protein-Substrate Interactions of Disease Genes

McFedries, Amanda Kathryn 04 December 2014 (has links)
Discovery of protein-metabolite and protein-substrate interactions that can specifically regulate genes involved in human biology is an important pursuit, as the study of such interactions can expand our understanding of human physiology and reveal novel therapeutic targets. The identification and characterization of these interactions can be approached from different perspectives. Chemists often use bioactive small molecules, such as natural products or synthetic compounds, as probes to identify therapeutically relevant protein targets. Biochemists and biologists often begin with a specific protein and seek to identify the endogenous ligands that bind to it. These interests have led to the development of methodology that relies heavily on synthetic and analytical chemistry to identify interactions, an approach that is complemented by in vivo strategies for validating the biological consequences of specific interactions.
3

Biochemical and Spectroscopic Characterization of Tryptophan Oxygenation: Tryptophan 2, 3-Dioxygenase and Maug

Fu, Rong 10 June 2009 (has links)
TDO utilizes b-type heme as a cofactor to activate dioxygen and insert two oxygen atoms into free L-tryptophan. We revealed two unidentified enzymatic activities of ferric TDO from Ralstonia metallidurans, which are peroxide driven oxygenation and catalase-like activity. The stoichiometric titration suggests that two moles of H2O2 were required for the production of one mole of N-formylkynurenine. We have also observed monooxygenated-L-tryptophan. Three enzyme-based intermediates were sequentially detected in the peroxide oxidation of ferric TDO in the absence of L-Trp including compound I-type and compound ES-type Fe-oxo species. The Fe(IV) intermediates had an unusually large quadrupole splitting parameter of 1.76(2) mm/s at pH 7.4. Density functional theory calculations suggest that it results from the hydrogen bonding to the oxo group. We have also demonstrated that the oxidized TDO was activated via a homolytic cleavage of the O-O bond of ferric hydroperoxide intermediate via a substrate dependent process to generate a ferrous TDO. We proposed a peroxide activation mechanism of the oxidized TDO. The TDO has a relatively high redox potential, the protonated state of the proximal histidine upon substrate binding as well as a common feature of the formation of ferric hydroxide species upon substrate or substrate analogues binding. Putting these together, we have proposed a substrate-based activation mechanism of the oxidized TDO. Our work also probed the role of histidine 72 as an acid-base catalyst in the active site. In H72S and H72N mutants, one water molecule plays a similar role as that of His72 in wild type TDO. MauG is a c-type di-heme enzyme which catalyze the biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone. Its natural substrate is a monohydroxylated tryptophan residue present in a 119-kDa precursor protein of methylamine dehydrogenase (MADH). We have trapped a novel bis-Fe(IV) intermediate from MauG, which is remarkably stable. A tryptophanyl radical intermediate of MADH has been trapped after the reaction of the substrate with the bis-Fe(IV) intermediate. Analysis by high-resolution size-exclusion chromatography shows that MauG can tightly bind to the biosynthetic precursor and form a stable complex, but the mature protein substrate does not.

Page generated in 0.0834 seconds