Spelling suggestions: "subject:"proteininteraktion"" "subject:"proteinextraktion""
1 |
Haarnadelförmige PNA-Peptid-KonjugateFischbach, Melanie 17 September 2015 (has links)
Das Entwicklungsstadium bestimmter Krankheiten ist eng mit der Konzentration diverser Proteine in biologischen Proben verknüpft. Eine sensitive Detektion dieser sogenannten Biomarker kann somit maßgeblich zu einer frühzeitigen Diagnose beitragen. In der vorliegenden Arbeit wurden strukturierte, fluorogene Sonden entwickelt, die die Möglichkeit bieten in einem homogenen Verfahren Zielproteine sensitiv, direkt und in Echtzeit nachzuweisen. Die peptidische Erkennungssequenz für das Zielprotein wurde dabei von zwei zueinander komplementären PNA-Segmenten flankiert. Die Sonden besaßen dadurch eine haarnadelförmige Anordnung, die kontrolliert eingebaute Reporter in eine enge Proximität zwang und ein minimales Hintergrundsignal im ungebundenen Zustand gewährleistete. Durch die Wechselwirkung mit dem Zielprotein erfolgte eine Reorganisation der Sondenstruktur, die fluoreszenzspektroskopisch verfolgt werden konnte. Für den Einbau der fluorogenen Einheiten wurden verschiedene Strategien entwickelt und die resultierenden Architekturen bzgl. ihres Einsatzes als sensitives Detektionssystem validiert. Als Zielproteine wurden die intrazellulären SH2-Domänen der Src- und Lck-Kinase sowie die extrazelluläre Matrix-Metalloprotease MMP-7, ein proteolytischer Biomarker für Krebs, untersucht. Besonders die neuartigen In-Stem Hairpin Peptide Beacons (IS-HPBs), bei denen fluorogene Pseudonukleobasen in die PNA-Stammregion eingebaut wurden, zeichneten sich als sensitive Proteasereporter mit einer bis zu 50-fachen Signalverstärkung aus. Mit einem excimerbasierten IS-HPB und einer zeitaufgelösten Fluoreszenzmethode konnte die direkte Detektion von MMP-7 bei einer kritischen Konzentration von 1 nM im humanen Blutserum erreicht werden. Eine mögliche Anwendbarkeit in der medizinischen Diagnostik wurde somit bekräftigt. Weiterhin wurden erste Hinweise mithilfe thermodynamischer Untersuchungen erhalten, dass die Strukturierung einer peptidischen Sonde zu einer erhöhten Selektivität beiträgt. / The developmental stage of certain diseases is closely linked to the concentration of various proteins in biological samples. A sensitive detection of these so-called biomarkers can thus significantly contribute to an early diagnosis. In the present work, structured, fluorogenic probes were developed that offer the possibility of a sensitive, direct and in real-time detection of target proteins in a homogeneous process. The peptidic recognition sequence for the target protein was thereby flanked by two self-complementary PNA segments. As a result, the probes possessed a hairpin-type arrangement, in which suitable appended labels are forced into close proximity and guaranteed a minimal background signal in the unbound state. By interacting with the target protein a reorganization of the probe structure occured, which could be followed by fluorescence spectroscopy. To embed the fluorogenic units different approaches were developed and the resulting architectures were validated relating to their use as a sensitive detection system. As target proteins the intracellular SH2-domains of the Src and Lck kinase and the extracellular matrix metalloprotease MMP-7, a proteolytic biomarker for cancer, were investigated. In particular, the new In-Stem Hairpin Peptide Beacons (IS-HPBs), in which fluorogenic pseudo nucleic acids were incorporated into the PNA-stem region, proved as sensitive protease reporters with an up to 50-fold signal amplification. By using an excimer-signaling IS-HPB and a time-resolved fluorescence method the direct detection of MMP-7 with a critical concentration of 1 nM within complex human blood serum was achieved. A possible application in medical diagnostics was thus confirmed. Furthermore, initial indications were obtained using thermodynamic studies that the structure of a peptide-based probe contributes to increased selectivity.
|
2 |
OSTE Microfluidic Technologies for Cell Encapsulation and Biomolecular AnalysisZhou, Xiamo January 2017 (has links)
In novel drug delivery system, the encapsulation of therapeutic cells in microparticles has great promises for the treatment of a range of health con- ditions. Therefore, the encapsulation material and technology are of great importance to the validity and efficiency of the advanced medical therapy. Several unsolved challenges in regards to versatile microparticle synthesis ma- terials and methods form the main obstacle for a translation of novel cell therapy concepts from research to clinical practice. Thiol-ene based polymer systems have emerged and gained great popular- ity in material development in general and in biomedical applications specif- ically. The thiol-ene platform is broad and therefore of interest for a variety of applications. At the same time, many aspects of this material platform are largely unexplored, for example material and manufacturing technology developments for microfluidic applications . In this Ph.D. thesis, thiol-ene materials are explored for use in cell encap- sulation. The marriage of these two technology fields breeds the possibility for a novel microfluidic cell encapsulation approach using a novel encapsulation material. To this end, several new manufacturing technologies for thiol-ene and thiol-ene-epoxy droplet microfluidic devices were developed. Moreover, core-shell microparticle synthesis for cell encapsulation based on a novel co- synthesis concept using a thiol-ene based material was developed and inves- tigated. Finally, a thiol-ene-epoxy system was also used for the formation of microwells and microchannels that improve protein analysis on microarrays. The first part of the thesis presents the background and state-of-the-art technologies in regards to cell therapy, microfluidics, and thiol-ene based ma- terials. In the second part of the thesis, a novel manufacturing approach of thiol-ene-epoxy material as well as core-shell particle co-synthesis in micro- fluidics using thiol-ene based material are presented and characterized. The third part of the thesis presents the cell viability studies of encapsulated cells using the novel encapsulation material and method. In the final part of the thesis, two applications of thiol-ene-epoxy gaskets for protein detection mi- croarrays are presented. / Inkapsling av levande celler i mikrokapslar för terapeutiska ändamål är mycket lovande för frmatida behandling av många olika sjukdomar. Emeller- tid är en behandlings effektivitet i hög grad beroende av vilka material som används för inkapsling och vilken teknisk lösning som används för att ska- pa mikrokapslarna. För närvarande återstår det många utmaningar för att omvandla grundforskningresultat till klinisk verklighet, vilken kräver mer än- damålsenliga tillvägagångssätt för att tillverka mikrokapslar i material som är kompatibla med användningsområdena. De senaste åren har tiol-en baserade polymerer har blivit mycket använda för materialutveckling i stort och för biomedicinska tillämpningar i synnerhet. Med tiol-en kemi kan en mycket stor mängd helt olika syntetiska material framställas, vilket gör tiol-ener intressanta för en mängd applikationer. För närvarande är dock mycket inom denna materialklass outforskat, t.ex. inom material och tillverkningmetodik för mikrofluidiktillämpningar. I denna avhandling används tiol-ener för cellinkapsling. Sammanslagning av dessa teknologier möjliggör en ny typ av cellinkapsling med nya materi- alegenskaper. En mängd olika tillverkningssätt där tiol-en eller tiol-en-epoxi används för droplet-mikrofluidiksystem utvecklades. Core-shell mikrokapsel- syntes för cell-inkapsling baserat på en ny metod för samtidig syntes av både core och shell utvecklades och karaktäriserades. Slutligen utvecklades ett tiol- en-epoxi system för enkel integrering med proteinmikroarrayer på objektsglas. I avhandlingens första del presenteras bakgrund och dagens bästa teknolo- gier för terapeutisk cellinkapsling, mikrofluidik och tiol-en baserade material. I avhandlingens andra del presenteras en ny tillverkningsmetod för mikro- strukturerade tiol-en-epoxi artiklar och samtidig syntes av core och shell för mikrokapslar med användande av mikrofluidik. I den tredje delen presenteras cellöverlevandsstudier för de celler som inkapslats med de nya materialen och de nyutvecklade metoderna. I den avslutande delen beskrivs två specifika fall där tiol-en-epoxi komponenter används för proteindetektion och mikroarrayer. / <p>QC 20171122</p>
|
Page generated in 0.0734 seconds