• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 831
  • 218
  • 93
  • 76
  • 45
  • 15
  • 15
  • 12
  • 8
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1663
  • 401
  • 388
  • 245
  • 219
  • 199
  • 174
  • 145
  • 139
  • 134
  • 129
  • 110
  • 101
  • 100
  • 87
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
801

Selection of antigens for antibody-based proteomics

Berglund, Lisa January 2008 (has links)
The human genome is predicted to contain ~20,500 protein-coding genes. The encoded proteins are the key players in the body, but the functions and localizations of most proteins are still unknown. Antibody-based proteomics has great potential for exploration of the protein complement of the human genome, but there are antibodies only to a very limited set of proteins. The Human Proteome Resource (HPR) project was launched in August 2003, with the aim to generate high-quality specific antibodies towards the human proteome, and to use these antibodies for large-scale protein profiling in human tissues and cells. The goal of the work presented in this thesis was to evaluate if antigens can be selected, in a high-throughput manner, to enable generation of specific antibodies towards one protein from every human gene. A computationally intensive analysis of potential epitopes in the human proteome was performed and showed that it should be possible to find unique epitopes for most human proteins. The result from this analysis was implemented in a new web-based visualization tool for antigen selection. Predicted protein features important for antigen selection, such as transmembrane regions and signal peptides, are also displayed in the tool. The antigens used in HPR are named protein epitope signature tags (PrESTs). A genome-wide analysis combining different protein features revealed that it should be possible to select unique, 50 amino acids long PrESTs for ~80% of the human protein-coding genes. The PrESTs are transferred from the computer to the laboratory by design of PrEST-specific PCR primers. A study of the success rate in PCR cloning of the selected fragments demonstrated the importance of controlled GC-content in the primers for specific amplification. The PrEST protein is produced in bacteria and used for immunization and subsequent affinity purification of the resulting sera to generate mono-specific antibodies. The antibodies are tested for specificity and approved antibodies are used for tissue profiling in normal and cancer tissues. A large-scale analysis of the success rates for different PrESTs in the experimental pipeline of the HPR project showed that the total success rate from PrEST selection to an approved antibody is 31%, and that this rate is dependent on PrEST length. A second PrEST on a target protein is somewhat less likely to succeed in the HPR pipeline if the first PrEST is unsuccessful, but the analysis shows that it is valuable to select several PrESTs for each protein, to enable generation of at least two antibodies, which can be used to validate each other. / QC 20100705
802

Enrichment strategy development for phosphoproteome analysis of saccharomyces cerevisiae

Lundemo, Pontus January 2009 (has links)
The reversible phosphorylation of proteins is central to regulating most aspects of cell function. Malfunction in this critical cellular process have been implicated to cause diseases such as diabetes, cancer, and Alzheimer’s. Recent advances in mass spectrometry have made it possible to study this important post translational modification on a proteome-wide scale. However, to be able to do so, enrichment of phosphorylated peptides is required. Pairwise comparison of individual steps in an enrichment procedure and simultaneous improvement of data analysis resulted in a protocol which allowed high confidence identification of 2,131 unique phosphorylated peptides from 1,026 proteins. Thereby not only establishing a working protocol for phosphopeptide enrichment in the Griffin Lab, but also generating the largest list of proteins phosphorylated under normal conditions in yeast to date.
803

Mass Spectrometry-Based Strategies for Multiplexed Analyses of Protein-Ligand Binding Interactions

DeArmond, Patrick D. January 2011 (has links)
<p>The detection and quantitation of protein-ligand binding interactions is important not only for understanding biological functions but also for the characterization of novel protein ligands. Because protein ligands can range from small molecules to other proteins, general techniques that can detect and quantitate the many classes of protein-ligand interactions are especially attractive. Additionally, the ability to detect and quantify protein-ligand interactions in complex biological mixtures would more accurately represent the protein-ligand interactions that occur in vivo, where differential protein expression and protein complexes can significantly affect a protein's ability to bind to a ligand of interest.</p><p> The work in this dissertation is focused on the development of new methodologies for the detection and measurement of protein-ligand interactions in complex mixtures using multiplex analyses. Methodologies for two types of multiplexed analyses of protein-ligand binding interactions are investigated here. The first type of multiplex analysis involves characterizing the binding of one protein target to many potential ligands, and the second type involves characterizing the binding of one ligand to many proteins. The described methodologies are derived from the SUPREX (stability of unpurified proteins from rates of H/D exchange) and SPROX (stability of proteins from rates of oxidation) techniques, which are chemical modification strategies that measure thermodynamic stabilities of proteins using a relationship between a protein's folding equilibrium and the extent of chemical modification. These two techniques were utilized in the development and application of several different experimental strategies designed to multiplex the analysis of protein-ligand interactions.</p><p> The first strategy that was developed involved a pooled compound approach for making SUPREX-based measurements of multiple ligands binding to a target protein. Screening rates of 6 s/ligand were demonstrated in a high-throughput screening project that involved the screening of two chemical libraries against human cyclophilin A (CypA), a protein commonly overexpressed in types of cancer. This study identified eight novel ligands to CypA with micromolar dissociation constants. Second, an affinity-based protein purification strategy was developed for the detection and quantitation of specific protein-ligand binding interactions in the context of complex protein mixtures. It involved performing SPROX in cell lysates and selecting the protein of interest using immunoprecipitation or affinity tag purification. A third strategy developed here involved a SPROX-based stable isotope labeling method for measuring protein-ligand interactions in multi-protein mixtures. This strategy was used in a proof-of-principle experiment designed to detect and quantify the indirect binding between yeast cyclophilin and calcineurin in a multi-component protein mixture. Finally, a quantitative proteomics platform was developed for the detection and quantitation of protein-ligand binding interactions on the proteomic scale. The platform was used to profile interactions of the proteins in a yeast cell lysate to several ligands, including the bioactive small molecules resveratrol and manassantin A, the cofactor nicotinamide adenine dinucleotide (NAD+), and two proteins, phosphoglycerate kinase (Pgk1) and pyruvate kinase (Pyk1). The above approaches should have broad application for use as discovery tools in the development of new therapeutic agents.</p> / Dissertation
804

Proteomic Profiling of the Planarian Schmidtea mediterranea and its Mucous Reveals Similarities with Human Secretions and those Predicted for Parasitic Flatworms

Bocchinfuso, Donald Gerald 21 November 2012 (has links)
The freshwater planarian Schmidtea mediterranea has been used in research for over 100 years, and is an emerging stem cell model. Exteriorly, planarians are covered in mucous secretions of unknown composition. While the planarian genome has been sequenced, it remains mostly unannotated. The goal my master’s research was to annotate the planarian proteome and mucous sub-proteome. Using a proteogenomics approach, I elucidated the proteome and mucous subproteome via mass spectrometry together with an in silico translated transcript database. I identified 1604 proteins, which were annotated using the Swiss-Prot BLAST algorithm and Gene Ontology analysis. The S. mediterranea proteome is highly similar to that predicted for the trematode Schistosoma mansoni associated with schistosomiasis. Remarkably, orthologs of 119 planarian mucous proteins are present in human mucosal secretions and tear fluid. I suggest planarians have potential to be a model system for parasitic worms and diseases underlined by mucous aberrancies.
805

Chicken Eggshell Membrane and Cuticle: Insight from Bioinformatics and Proteomics

Du, Jingwen 10 January 2013 (has links)
The chicken eggshell possesses physical and chemical barriers to protect the embryo from pathogens. The avian eggshell cuticle is the outmost layer of the eggshell whose protein constituents remain largely unknown. Since eggs with incomplete or absent cuticle are more susceptible to bacterial contamination, we hypothesize that cuticle protein components play an important role in microbial resistance. In our study, at least 47 proteins were identified by LC/MS/MS in the non-calcified cuticle layer. Similar to Kunitz-like protease inhibitor (also annotated as ovocalyxin-25, OCX-25) and ovocalyxin-32 (OCX-32) were two of most abundant proteins of the cuticle proteins. Some proteins that have antimicrobial activity were also detected in the proteomic results, such as lysozyme C, ovotransferrin, ovocalyxin-32, cystatin, ovoinhibitor. This study represents the first comprehensive report of the cuticle proteome. Since the sequence similarity of the kunitz motif in OCX-25 is similar to that of BPTI, it is predicted that it will have the same trypsin inhibitory and antimicrobial activity against Gram-positive and/or Gram-negative bacteria. In order to test the antimicrobial property and trypsin inhibitor activity of OCX-25, cuticle proteins were extracted by 1N HCl. Antimicrobial activity was monitored using the Bioscreen C instrument; and antimicrobial activity was identified primarily against Staphylococcus aureus. Trypsin inhibitor activity was studied by using a specific trypsin assay, and the assay indicated that the cuticle proteins could inhibit the reaction of trypsin and substrate. Therefore, the current research has provided some insight into the antimicrobial and enzymatic aspects of the cuticle proteins, and its function for egg protection. Eggshell membranes are another important component of the chicken eggshell.Due to its insoluble and stable properties, there are still many questions regarding formation and constituents of the eggshell membranes. The purpose of our study was to identify eggshell membrane proteins, particularly these responsible for its structural features, by examining the transcriptome of the white isthmus during its formation. Bioinformatics tools were applied to analyze the differentially expressed genes as well as their encoded proteins. Some interesting proteins were encoded by the over-expressed genes in the white isthmus during the formation of eggshell membranes, such as Collagen X, and similar to spore coat protein SP75. These proteins may have potential applications. Our study provides a detailed description of the chicken white isthmus transcriptome during formation of the eggshell membranes; it could lead to develop the strategies to improve food safety of the table egg.
806

Bead based protein profiling in blood

Neiman, Maja January 2013 (has links)
This thesis is about protein profiling in blood-derived samples using suspension bead ar- rays built with protein affinity reagents, and the evaluation of binding characteristics and potential disease relation of such profiles. A central aim of the presented work was to discover and verify disease associated protein profiles in blood-derived samples such as serum or plasma. This was based on immobiliz- ing antigens or antibodies on color-coded beads for a multiplexed analysis. This concept generally allow for a dual multiplexing because hundreds of samples can be screened for hundreds of proteins in a miniaturized and parallelized fashion. At first, protein antigens were used to study humoral immune responses in cattle suffering from a mycoplasma infec- tion (Paper I). Here, the most immunogenic of the applied antigens were identified based on reactivity profiles from the infected cattle, and were combined into an antigen cocktail to serve as a diagnostic assay in a standard ELISA set-up. Next, antibodies and their em- ployment in assays with directly labeled human samples was initiated. This procedure was applied in a study of kidney disorders where screening of plasma resulted in the discovery of a biomarker candidate, fibulin-1 (Paper II). In parallel to the disease related applica- tions, systematic evaluations of the protein profiles were conducted. Protein profiles from 2,300 antibodies were classified on the bases of binding properties in relation to sample heating and stringent washing (Paper III). With a particular focus on heat dependent de- tectability, a method was developed to visualize those proteins that were captured to the beads in an immunoassay by using Western blotting (Paper IV). In conclusion, this thesis presents examples of the possibilities of comparative plasma profiling enabled by protein bead arrays. / <p>QC 20130208</p>
807

Tissue Microarrays for Analysis of Expression Patterns

Lindskog Bergström, Cecilia January 2013 (has links)
Proteins are essential building blocks in every living cell, and since the complete human genome was sequenced in 2004, researchers have attempted to map the human proteome, which is the functional representation of the genome. One such initiative is the Human Protein Atlas programme (HPA), which generates monospecific antibodies towards all human proteins and uses these for high-throughput tissue profiling on tissue microarrays (TMAs). The results are publically available at the website www.proteinatlas.org. In this thesis, TMAs were used for analysis of expression patterns in various research areas. Different search queries in the HPA were tested and evaluated, and a number of potential biomarkers were identified, e.g. proteins exclusively expressed in islets of Langerhans, but not in exocrine glandular cells or other abdominal organs close to pancreas. The identified candidates were further analyzed on TMAs with pancreatic tissues from normal and diabetic individuals, and colocalization studies with insulin and glucagon revealed that several of the investigated proteins (DGCR2, GBF1, GPR44 and SerpinB10) appeared to be beta cell specific. Moreover, a set of proteins differentially expressed in lung cancer stroma was further analyzed on a clinical lung cancer cohort in the TMA format, and one protein (CD99) was significantly associated with survival. In addition, TMAs with tissue samples from different species were generated, e.g. for mapping of influenza virus attachment in various human and avian tissues. The results showed that the gull influenza virus H16N3 attached to human respiratory tract and eye, suggesting possible transmission of the virus between gull and human. TMAs were also used for analysis of protein expression differences between humans and other primates, and two proteins (TCF3 and SATB2) proved to be significantly differentially expressed on the human lineage at both the protein level and the RNA level.   In conclusion, this thesis exemplifies the potential of the TMA technology, which can be used for analysis of expression patterns in a large variety of research fields, such as biomarker discovery, influenza virus research or further understanding of human evolution.
808

Microtubule involvement in the plant low temperature response

Sproule, Kerry Ann 09 July 2008
Cold acclimation is a complex process where plants acquire increased freezing tolerance following exposure to low, non-freezing temperatures. Microtubules are dynamic components of the cytoskeleton that are essential for plant growth and development, and there are multiple lines of evidence indicating microtubules are involved in the acquisition of freezing tolerance. <p>The organization of microtubules (MTs) was tracked over the course of a cold acclimation period using GFP:TUB6 and fluorescent imaging tools. Experiments found that MTs undergo incomplete, transient disassembly following exposure to acclimating temperatures, which is accompanied by intranuclear tubulin accumulation and followed by MT reassembly. The importance of the observed changes to MT organization was examined with MT disrupting chemicals that caused reduced MT dynamics or induced transient MT disassembly similar to that of cold acclimation. Results of these experiments suggest that MT reorganization is important for cold acclimation, but the disassembly and reassembly do not directly control cold acclimation.<p>MT binding proteins are likely to play a key role in the low temperature response because they control MT activity and organization, participate in low temperature signal transduction pathways, and mediate interactions between various elements of this pathway. By employing a number of proteomics techniques we were able to identify 96 tubulin-binding proteins from untreated and short term cold acclimated Arabidopsis plants. Proteins both known to and predicted to bind to MTs and unexpected MT binding proteins were identified. The identified tubulin binding proteins have a range of cellular functions, including RNA transport and protein translation, stress responses, and functions related to various metabolic pathways, and cell growth and organization. <p>Exposure to low temperatures affected the binding of some of these proteins to MTs with the identified tubulin binding proteins potentially involved in the cold acclimation process and stress response through a number of possible pathways.<p>This study represents the first live cell imaging of MT reorganization in response to low temperatures and the first time microtubule binding proteins from whole plant protein extracts were identified using 1D gel LC-MS/MS analysis.
809

Comparing Tyrosine Phosphorylation Changes after Erlotinib Treatment betweem Drug Sensitive and Drug Resistant Non-small Cell Lung Cancer Lines by Mass Spectrometry

Shih, Warren 15 February 2010 (has links)
Non-Small-Cell-Lung Cancer (NSCLC) patients with mutations in EGFR have greater response rates and survival when treated with the tyrosine kinase inhibitor erlotinib. To elucidate how erlotinib inhibits EGFR, this study included: 1) inhibiting an EGFR mutant cell line to reveal EGFR regulated phosphotyrosine (pY) sites; 2) comparing erlotinib sensitive and insensitive cell lines to reveal functionally important pY sites; 3) revealing novel pY sites. Observations were collected using the LTQ-Orbitrap mass spectrometer. This study identified five new EGFR regulated pY sites and five pY sites that correlated with erlotinib sensitivity; the majority of them are related to cell-cell interactions. By comparing all observed pY sites to the Phosphosite and PhosphoELM database, our results included 67 unregistered sites. This study has identified novel biomarkers and potential therapeutic targets, many of which were associated with cell migration and adhesion function. Further functional validation is necessary.
810

Global Quantitative Proteomic Profiling through 18O-labeling in Combination with MS/MS Spectra Analysis

White, Carl 30 December 2010 (has links)
By integrating the simplicity of 18O-labeling and the low signal-to-noise of MS/MS spectra with supporting software and combining them with global shotgun protein identification, a robust quantitative pipeline has been created that avoids the disadvantages of other quantitative approaches. Test mixtures of labeled and unlabeled peptides were subjected to LC-MS/MS profiling experiments. Software programs were developed and applied to automatically determine protein ratios between two samples while applying a correction for incomplete labeling. The measurement of relative abundance at the product ion (MS/MS) level, instead of at the full scan (MS) level, is shown to provide excellent accuracy and sensitivity. Ratio distributions approached the expected means, allowing empirical derivation of confidence level cutoffs for determining statistically significant fold-changes in protein abundance. A set of stringent criteria for detecting spurious ratios based on consistency checking between unlabeled and labeled y-ion pairs was found to highlight putative false positive identifications.

Page generated in 0.0492 seconds