Spelling suggestions: "subject:"planetary"" "subject:"interplanetary""
81 |
VLA Observations of the Disk around the Young Brown Dwarf 2MASS J044427+2512Ricci, L., Rome, H., Pinilla, P., Facchini, S., Birnstiel, T., Testi, L. 25 August 2017 (has links)
We present multi-wavelength radio observations obtained with the VLA of the protoplanetary disk surrounding the young brown dwarf 2MASS J04442713+2512164 (2M0444) in the Taurus star-forming region. 2M0444 is the brightest known brown dwarf disk at millimeter wavelengths, making this an ideal target to probe radio emission from a young brown dwarf. Thermal emission from dust in the disk is detected at 6.8 and 9.1 mm, whereas the 1.36 cm measured flux is dominated by ionized gas emission. We combine these data with previous observations at shorter sub-mm and mm wavelengths to test the predictions of dust evolution models in gas-rich disks after adapting their parameters to the case of 2M0444. These models show that the radial drift mechanism affecting solids in a gaseous environment has to be either completely made inefficient, or significantly slowed down by very strong gas pressure bumps in order to explain the presence of mm/cm-sized grains in the outer regions of the 2M0444 disk. We also discuss the possible mechanisms for the origin of the ionized gas emission detected at 1.36 cm. The inferred radio luminosity for this emission is in line with the relation between radio and bolometric luminosity valid for for more massive and luminous young stellar objects, and extrapolated down to the very low luminosity of the 2M0444 brown dwarf.
|
82 |
Imaging Planet Formation Inside the Diffraction LimitSallum, Stephanie Elise, Sallum, Stephanie Elise January 2017 (has links)
For decades, astronomers have used observations of mature planetary systems to constrain planet formation theories, beginning with our own solar system and now the thousands of known exoplanets. Recent advances in instrumentation have given us a direct view of some steps in the planet formation process, such as large-scale protostar and protoplanetary disk features and evolution. However, understanding the details of how planets accrete and interact with their environment requires direct observations of protoplanets themselves. Transition disks, protoplanetary disks with inner clearings that may be caused by forming planets, are the best targets for these studies. Their large distances, compared to the stars normally targeted for direct imaging of exoplanets, make protoplanet detection difficult and necessitate novel imaging techniques.
In this dissertation, I describe the results of using non-redundant masking (NRM) to search for forming planets in transition disk clearings. I first present a data reduction pipeline that I wrote to this end, using example datasets and simulations to demonstrate reduction and imaging optimizations. I discuss two transition disk NRM case studies: T Cha and LkCa 15. In the case of T Cha, while we detect significant asymmetries, the data cannot be explained by orbiting companions. The fluxes and orbital motion of the LkCa 15 companion signals, however, can be naturally explained by protoplanets in the disk clearing. I use these datasets and simulated observations to illustrate the effects of scattered light from transition disk material on NRM protoplanet searches. I then demonstrate the utility of the dual-aperture Large Binocular Telescope Interferometer's NRM mode on the bright B[e] star MWC 349A. I discuss the implications of this work for planet formation studies as well as future prospects for NRM and related techniques on next generation instruments.
|
83 |
A Thermodynamic View of Dusty Protoplanetary DisksLin, Min-Kai, Youdin, Andrew N. 08 November 2017 (has links)
Small solids embedded in gaseous protoplanetary disks are subject to strong dust-gas friction. Consequently, tightly coupled dust particles almost follow the gas flow. This near conservation of the dust-to-gas ratio along streamlines is analogous to the near conservation of entropy along flows of (dust-free) gas with weak heating and cooling. We develop this thermodynamic analogy into a framework to study dusty gas dynamics in protoplanetary disks. We show that an isothermal dusty gas behaves like an adiabatic pure gas, and that finite dust-gas coupling may be regarded as effective heating/cooling. We exploit this correspondence to deduce that (1) perfectly coupled, thin dust layers cannot cause axisymmetric instabilities; (2) radial dust edges are unstable if the dust is vertically well-mixed; (3) the streaming instability necessarily involves a gas pressure response that lags behind dust density; and (4) dust-loading introduces buoyancy forces that generally stabilize the vertical shear instability associated with global radial temperature gradients. We also discuss dusty analogs of other hydrodynamic processes (e.g., Rossby wave instability, convective overstability, and zombie vortices) and how to simulate dusty protoplanetary disks with minor tweaks to existing codes for pure gas dynamics.
|
84 |
The Fragmentation Criteria in Local Vertically Stratified Self-gravitating Disk SimulationsBaehr, Hans, Klahr, Hubert, Kratter, Kaitlin M. 09 October 2017 (has links)
Massive circumstellar disks are prone to gravitational instabilities, which trigger the formation of spiral arms that can fragment into bound clumps under the right conditions. Two-dimensional simulations of self-gravitating disks are useful starting points for studying fragmentation because they allow high-resolution simulations of thin disks. However, convergence issues can arise in 2D from various sources. One of these sources is the 2D approximation of self-gravity, which exaggerates the effect of self-gravity on small scales when the potential is not smoothed to account for the assumed vertical extent of the disk. This effect is enhanced by increased resolution, resulting in fragmentation at longer cooling timescales beta. If true, it suggests that the 3D simulations of disk fragmentation may not have the same convergence problem and could be used to examine the nature of fragmentation without smoothing self-gravity on scales similar to the disk scale height. To that end, we have carried out local 3D self-gravitating disk simulations with simple beta cooling with fixed background irradiation to determine if 3D is necessary to properly describe disk fragmentation. Above a resolution of similar to 40 grid cells per scale height, we find that our simulations converge with respect to the cooling timescale. This result converges in agreement with analytic expectations which place a fragmentation boundary at beta(crit) = 3.
|
85 |
Shearing waves and the MRI dynamo in stratified accretion discsDonnelly, Cara January 2014 (has links)
Accretion discs efficiently transport angular momentum by a wide variety of as yet imperfectly understood mechanisms, with profound implications for the disc lifetime and planet formation. We discuss two different methods of angular momentum transport: first, generation of acoustic waves by mixing of inertial waves, and second, the generation of a self-sustaining magnetic field via the magnetorotational instability (MRI) which would be a source of dissipative turbulence. Previous local simulations of the MRI have shown that the dynamo changes character on addition of vertical stratification. We investigate numerically 3D hydrodynamic shearing waves with a conserved Hermitian form in an isothermal disc with vertical gravity, and describe the associated symplectic structure. We continue with a numerical investigation into the linear evolution of the MRI and the undular magnetic buoyancy instability in isolated flux regions and characterise the resultant quasi-linear EMFs as a function of height above the midplane. We combine this with an analytic description of the linear modes under an assumption of a poloidal-toroidal scale separation. Finally, we use RAMSES to perform full MHD simulations in a zero net flux shearing box, followed by spatial and a novel temporal averaging to reveal the essential structure of the dynamo. We find that inertial modes may be efficiently converted into acoustic modes for "bending waves", despite a fundamental ambiguity in the inertial mode structure. With our linear MRI and the undular magnetic buoyancy modes we find the localisation of the instability high in the atmosphere becomes determined by magnetic buoyancy rather than field strength for small enough azimuthal wavenumber, and that the critical Alfven speed below which the dynamo can operate increases with increasing distance from the midplane. We calculate analytically quasi-linear EMFs which predict both a vertical propagation of toroidal field and a method for creation of radial field. From our fully nonlinear calculations we find an electromotive force in phase with the toroidal field, which is itself 3π/2 out of phase with the radial (sheared) field at the midplane, and good agreement with our quasi-linear analytics. We have identified an efficient mechanism for generating acoustic waves in a disc. In our investigation of the accretion disc dynamo, we have reproduced analytically the EMFs calculated in our simulations, given arguments based on the phase of relevant quantities, several correlation integrals and the scalings suggested by our analytic work. Our analysis contributes significantly to an explanation for the dynamo in an accretion disc.
|
86 |
Spektrální diagnostika látky v okolí ranných hvězd / Spectroscopic diagnosis of extended circumstellar regions about early type starsDvořáková, Nela January 2019 (has links)
Nela Dvořáková 19.7.2019 1 Abstract We study a representative of a diverse group of stars exhibiting the B[e] phe- nomenon, designated MWC 939. This object might be an important link be- tween the stage of the asymptotic giant branch and planetary nebula stage as it is one of a few such objects observed. Our focus is aimed at spectral analysis of the circumstellar matter around the central star. We assemble a line list for MWC 939 and observe variations of its spectrum. Electron density and temper- ature are estimated using nebular diagnostics of ratios of [S II] λλ 6716, 6731 ˚A and [O I] λλ 6300, 6364 ˚A and 5577 ˚A. These estimates are then used for detailed calculations of the structure of circumstellar envelope. 1
|
87 |
Solving Navier-Stokes equations in protoplanetary disk using physics-informed neural networksMao, Shunyuan 07 January 2022 (has links)
We show how physics-informed neural networks can be used to solve compressible \NS equations in protoplanetary disks. While young planets form in protoplanetary disks, because of the limitation of current techniques, direct observations of them are challenging. So instead, existing methods infer the presence and properties of planets from the disk structures created by disk-planet interactions. Hydrodynamic and radiative transfer simulations play essential roles in this process. Currently, the lack of computer resources for these expensive simulations has become one of the field's main bottlenecks. To solve this problem, we explore the possibility of using physics-informed neural networks, a machine learning method that trains neural networks using physical laws, to substitute the simulations. We identify three main bottlenecks that prevent the physics-informed neural networks from achieving this goal, which we overcome by hard-constraining initial conditions, scaling outputs and balancing gradients. With these improvements, we reduce the relative L2 errors of predicted solutions by 97% ~ 99\% compared to the vanilla PINNs on solving compressible NS equations in protoplanetary disks. / Graduate / 2022-12-10
|
88 |
Multiwavelength polarimetric properties of protoplanetary disks / 原始惑星系円盤の多波長偏光特性Tazaki, Ryo 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20182号 / 理博第4267号 / 新制||理||1613(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 嶺重 慎, 准教授 前田 啓一, 教授 長田 哲也 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
89 |
Parametric Study of the Rossby Wave Instability in a Two-Dimensional Barotropic Disk / 広いパラメータ領域を被覆する二次元順圧円盤上におけるロスビー波不安定性の研究Ono, Tomohiro 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20917号 / 理博第4369号 / 新制||理||1627(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 嶺重 慎, 准教授 前田 啓一, 教授 太田 耕司 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
90 |
Investigating the Structure of Protoplanetary Disks Using Radiative Transfer ModelingSwearingen, Jeremy R. 12 October 2015 (has links)
No description available.
|
Page generated in 0.0738 seconds