• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 11
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Small Signal and Nonlinear Models of InGaAs pseudomorphic High Electron Mobility Transistors

Cheng, Chih-Han 02 September 2009 (has links)
Recent advances in wireless communication industry, radio- frequency circuits are developing fast. For power amplifiers, the active circuits are mainly composed of transistors where withstand high voltage and current. The excellent transistors characteristic result in good circuit performances. In the thesis, the modeling of InGaAs pseudomorphic high electron mobility transistor was provided by Win Semiconductor Corporation. The established small signal model contains extrinsic and intrinsic elements. The extrinsic elements are extracted by simple method without fitting process for long time. Then, the intrinsic elements are obtained by conventional matrix transformations. The each element of models is varied with different gate width area are also discussed. Finally, the nonlinear models are expanded upon the concept of small signal model. Due to some of intrinsic elements are significantly varied with bias, small signal models have not applied to nonlinear circuit simulations. For developing nonlinear models, the nonlinear elements characteristics are described by empirical fitting equations. The accuracy of models is achieved by comparing simulated and on wafer measurement results, including DC¡Bsmall signal and large signal power characteristics.
2

Luminescence Studies On Some Technologically Important III-V Ternary Pseudomorphic Heterostructures

Naika, K Gopalakrishna 08 1900 (has links) (PDF)
No description available.
3

DIAGENETIC FLUIDS AND CONCRETION MINERALOGY IN JURASSIC NAVAJO SANDSTONE

Baker, Desiree Nakia 01 May 2022 (has links)
Iron (oxyhydr)oxide concretions in the Navajo Sandstone of southern Utah have been extensively researched as Martian analogues. However, the discovery of calcium carbonate concretions in areas such as Coyote Gulch, Utah, has encouraged recent studies to understand the relationship between calcium carbonate spheroidal concretions as possible precursors to iron (oxyhydr)oxide concretions, and to determine the fluid chemistries involved in diagenesis. This is important because nucleation and precipitation mechanisms of these spheroidal calcium carbonate and iron (oxyhydr)oxide concretions and fluid mechanisms in iron rich environments could affect the preservation of possible biosignatures in other subsurface features on Mars. The elemental and mineralogical compositions of the concretions were examined in order to determine physical and chemical features shared by the two types of concretions and did show that they share similar morphologies; however, the Coyote Gulch concretions are calcite cemented (~30 wt.%), with secondary iron (oxyhydr)oxide precipitation and decreases in calcite in transects away from the calcium carbonate concretions. Several chemical and mineralogical differences exist between the two separate populations of concretions, possibly due to regional variability of reacting phases in fluid systems. Spring fluids emanating from the Navajo Sandstone in Coyote Gulch were tested to determine the fluids responsible for the development of any of the concretion mineralogies in the study area which could form in distinctive geochemical systems. Geochemical modeling performed in this research explored the question of fluid chemistry involved in concretion formation in the Navajo Sandstone and findings suggest that the calcite concretions formed prior to the precipitation of secondary iron (oxyhydr)oxides and may have provided a localized buffering environment for the precipitation of iron (oxyhydr)oxides. Paleofluid circulation, redox processes, and elemental mobility are examined using the geochemistry of Navajo Sandstone concretions and host rock. Various simulations applicable to diagenetic fluids in the studied concretions show the importance of salinity and pH in paleoaquifers in order to precipitate mineral assemblages similar to those found in the Navajo Sandstone. Widespread dissolution features, major and trace element distributions, and geochemical modeling identified feasible fluid-rock interactions in paleofluids, including the importance of limited H2S gas and the limited feasibility of hydrocarbon rich fluids in concretion formation using current data. A universal mechanism for calcium carbonate to iron (oxyhydr)oxide concretion formation could be applied on other planets and provide exciting implications in the search for carbon rich redox gradients which could support life in the subsurface of otherwise inhospitable planets.
4

Investigation on Device Characteristics of the InGaAs Pseudomorphic High Electron Mobility Transistors¡GRF I-V Curves and High Frequency Nonlinear Models Establishment

Lee, Yen-Ting 02 September 2010 (has links)
In this thesis, the investigation focuses on the analysis of the high frequency characteristics and the nonlinearity of the transistors. In view of the III-V semiconductors which have excellent high frequency performance and the advantage for high frequency circuit design, the 0.15£gm InGaAs based pseudomorphic high electron mobility transistors provided by WIN semiconductor Corp. were used in this study. The high frequency measurement was utilized to extract both extrinsic and intrinsic components of the transistors, and further to establish the small signal equivalent model in each bias condition. According to the physical definition of the extracted gm, gds and the relationship with the output current, RF I-V curves could be determined through the integration procedure. The nonlinearity of the transistors can be attributed to the nonlinear input capacitance Cgs and Cgd, and the voltage dependent current source. The high frequency nonlinear models proposed in this thesis were based on classic Angelov model. For the high frequency application, the frequency dependent characteristics of the nonlinear sources would be taken into consideration through the combination of the RF I-V curves and extracted intrinsic components. Thus, the nonlinearities could be able to describe by nonlinear function through the fitting process and model the output performance completely. The accuracy of the models could be confirmed through the comparison between the simulation and the measurement result. Obviously, the high frequency models which include the high frequency effect and the nonlinear characteristics have excellent agreement with the experimental data.
5

Some Studies On Interface States In GaAs MESFET's & HJFET's

Balakrishnan, V R 07 1900 (has links) (PDF)
No description available.
6

Low-Cost Microwave-Assisted Partial Pseudomorphic Transformation of Biogenic Silica

Schneider, Denise, Kircheis, Ralf, Wassersleben, Susan, Einicke, Wolf-Dietrich, Gläser, Roger, Enke, Dirk 03 April 2023 (has links)
This work introduces a cost and time efficient procedure to specifically increase mesopore volume and specific surface area of biogenic silica (specific surface area: 147 m2 g−1 and mesopore volume: 0.23 cm3 g−1) to make it suitable for applications in adsorption or as catalyst support. The target values were a specific surface area of ∼500 m2 g−1 and a mesopore volume of ∼0.40–0.50 cm3 g−1 as these values are industrially relevant and are reached by potential concurring products such as precipitated silica, silica gel, and fumed silica. The applied process of partial pseudomorphic transformation was carried out as a single reaction step in a microwave reactor instead of commonly used convective heating. In addition, the conventionally used surfactant cetyltrimethylammonium bromide (CTABr) was substituted by the low-cost surfactant (Arquad® 16-29, cetyltrimethylammonium chloride (CTACl) aqueous solution). The influence of microwave heating, type of surfactant as well as the concentration of NaOH and CTACl on the textural and structural properties of the modified biogenic silica was investigated using nitrogen adsorption as well as scanning and transmission electron microscopy. The results show that the textural parameters of the modified biogenic silica can be exactly controlled by the amount of NaOH in the reaction solution. By variation of the NaOH concentration, specific surface areas in the range of 215–1,001m2 g−1 andmesopore volumes of 0.25–0.56 cm3 g−1 were achieved after reaction at 393 K for 10min. The presented microwave route using the low-cost surfactant solution decreases the reaction time by 99% and as shown in an example for German prices, lowers the costs for the surfactant by 76–99%.
7

Predicting Polymorphic Phase Stability in Multilayered Thin Films

Thompson, Gregory B. 19 March 2003 (has links)
No description available.
8

Préparation de matériaux zéolithiques à mésoporosité contrôlée à l'aide d'agents structurants recyclables dans l'eau / Preparation of zeolitic materials with controlled mesoporosity using recyclable templates in water

Chal, Robin 25 May 2012 (has links)
Les zéolithes sont largement utilisées en catalyse acide, particulièrement en pétrochimie. Toutefois, leur activité n'est pas optimale à cause des limitations diffusionnelles imposées par leur structure microporeuse. Diverses approches ont été proposées pour contourner ces limitations et notamment la préparation des zéolithes mésoporeuses. Après une évaluation industrielle des différentes méthodes rapportées dans la littérature, la première partie de la thèse a été consacrée à la mise au point, la compréhension et l'optimisation d'une procédure de préparation de zéolithes à mésoporosité contrôlée à l'aide d'un agent structurant organique. Nous nous sommes intéressés à la recristallisation de la zéolithe Y qui permet de créer un volume mésoporeux important au sein des cristaux de zéolithe par transformation pseudomorphique. Dans une seconde partie, nous rapportons la première synthèse de zéolithes mésoporeuses à partir d'un agent structurant récupérable et recyclable en conditions douces dans l'eau. En synthétisant un agent structurant thermosensible adapté aux conditions de recristallisation, une mésostructure contrôlée a pu être obtenue au sein de la zéolithe. L'extraction du polymère en solution aqueuse a été optimisée et son recyclage sur quatre cycles de recristallisation a été démontré. / Zeolites are widely used in acid catalysis, especially in petrochemistry. However, their activity is not optimal because of diffusional limitations imposed by their microporous structure. Various approaches have been proposed to circumvent these limitations, including the preparation of mesoporous zeolites. After an industrial assessment of the different methods reported in the literature, the first part of the thesis was devoted to the development, understanding and optimization of a procedure for preparation of zeolites with controlled mesoporosity using an organic structuring agent. We studied the recrystallization of the zeolite Y, which creates a large mesoporous volume in the zeolite crystals by pseudomorphic transformation. In the second part, we report the first synthesis of mesoporous zeolites using a structuring agent recoverable and recyclable under mild conditions in water. By synthesizing a structuring agent adapted to the conditions of thermal recrystallization, controlled mesostructure could be obtained within the zeolite. The extraction of the polymer in aqueous solution has been optimized and recycling of four cycles of recrystallization has been demonstrated.
9

Modelling and design of Low Noise Amplifiers using strained InGaAs/InAlAs/InP pHEMT for the Square Kilometre Array (SKA) application

Ahmad, Norhawati Binti January 2012 (has links)
The largest 21st century radio telescope, the Square Kilometre Array (SKA) is now being planned, and the first phase of construction is estimated to commence in the year 2016. Phased array technology, the key feature of the SKA, requires the use of a tremendous number of receivers, estimated at approximately 37 million. Therefore, in the context of this project, the Low Noise Amplifier (LNA) located at the front end of the receiver chain remains the critical block. The demanding specifications in terms of bandwidth, low power consumption, low cost and low noise characteristics make the LNA topologies and their design methodologies one of the most challenging tasks for the realisation of the SKA. The LNA design is a compromise between the topology selection, wideband matching for a low noise figure, low power consumption and linearity. Considering these critical issues, this thesis describes the procedure for designing a monolithic microwave integrated circuit (MMIC) LNA for operation in the mid frequency band (400 MHz to 1.4 GHz) of the SKA. The main focus of this work is to investigate the potential of MMIC LNA designs based on a novel InGaAs/InAlAs/InP pHEMT developed for 1 µm gate length transistors, fabricated at The University of Manchester. An accurate technique for the extraction of empirical linear and nonlinear models for the fabricated active devices has been developed. In addition to the linear and nonlinear model of the transistors, precise models for passive devices have also been obtained and incorporated in the design of the amplifiers. The models show excellent agreement between measured and modelled DC and RF data. These models have been used in designing single, double and differential stage MMIC LNAs. The LNAs were designed for a 50 Ω input and output impedance. The excellent fits between the measured and modelled S-parameters for single and double stage single-ended LNAs reflects the accurate models that have been developed. The single stage LNA achieved a gain ranging from 9 to 13 dB over the band of operation. The gain was increased between 27 dB and 36 dB for the double stage and differential LNA designs. The measured noise figures obtained were higher by ~0.3 to ~0.8 dB when compared to the simulated figures. This is due to several factors which are discussed in this thesis. The single stage design consumes only a third of the power (47 mW) of that required for the double stage design, when driven from a 3 V supply. All designs were unconditionally stable. The chip sizes of the fabricated MMIC LNAs were 1.5 x 1.5 mm2 and 1.6 x 2.5 mm2 for the single and double stage designs respectively. Significantly, a series of differential input to single-ended output LNAs became of interest for use in the Square Kilometre Array (SKA), as it utilises differential output antennas in some of its configurations. The single-ended output is preferable for interfacing to the subsequent stages in the analogue chain. A noise figure of less than 0.9 dB with a power consumption of 180 mW is expected for these designs.
10

Synthèses de microréacteurs à base de monolithes siliciques et zéolithiques à porosité hiérarchique pour le développement de la catalyse en flux / Synthesis of silica and zeolite monoliths with hierarchical porosity as microreactors for in-flow catalysis

Sachse, Alexander 26 October 2011 (has links)
L'objectif de ce travail est la synthèse et la fonctionnalisation de monolithes siliciques à porosité hiérarchique et leur utilisation en tant que microréacteur en catalyse sous flux. Une synthèse reproductible de monolithes siliciques a été mise à point. La fonctionnalisation avec une variété de fonctions a été réalisée, telle que la fonctionnalisation avec des groupements aminopropyle, avec de l'oxyde d'aluminium, par incorporation des MOFs (CuBTC) et par dépôt de nanoparticules de palladium. Les monolithes fonctionnalisés ont été testés en tant que microréacteurs catalytiques sous flux pour les réactions de Knoevenagel, de Diels-Alder et de Friedländer et montrent dans plusieurs cas une augmentation de la productivité des réactions par rapport aux réacteurs batch ou à lit fixe ainsi qu'une automatisation des procédés. La transformation pseudomorphique de monolithes siliciques en monolithes zéolithiques en phase SOD et LTA a été mise a point. Nous avons ainsi montré la première utilisation d'un monolithe macroporeux à base de zéolithes en tant que microréacteur pour la synthèse de produits de chimie fine en continu. Les monolithes zéolithiques ont aussi été analysés pour l'échange d'ions en dynamique et sont prometteurs pour une application en tant que matériaux pour la décontamination d'effluents radioactifs. / The aim of this work is the synthesis and the functionalization of silica monoliths with hierarchical porosity and their use as catalytic microreactors for flow-through chemistry. A reproducible synthesis of the silica monoliths was elaborated. The functionalization with a variety of functions has been performed, such as aminopropyl groups, aluminium oxide, MOFs (CuBTC), and palladium nanoparticles. These functionalized silica monoliths have been used for the Knoevenagel condensation, Diels-Alder reaction and Fiedländer reaction, where they show increasing productivities compared to classically used reactors (batch, packed-bed) and enable process automation. The pseudomorphic transformation of silica monoliths in zeolite monoliths in the SOD and LTA phase has been elaborated. We have preformed the first implementation of a macroporous zeolite monolith as microreactor for the fine chemical production in flow continuous conditions. The zeolite monoliths have been tested for dynamic ion exchange and are promising materials for the use as decontaminants of radioactive discharges.

Page generated in 0.0599 seconds