• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mécanismes de formation et de fermeture des phagosomes dans les macrophages / Mechanisms of formation and closure of phagosomes in macrophages

Marie-Anaïs, Florence 27 September 2016 (has links)
La phagocytose est un mécanisme cellulaire essentiel de l’organisme. Elle joue un rôle à la fois dans le maintien de l’homéostasie tissulaire mais également dans le système immunitaire. Ce processus, réalisé par des cellules phagocytaires, telles que les cellules dendritiques, les polymorphonucléaires neutrophiles ou les macrophages, permet l’ingestion et l’élimination quotidienne de particules de grandes tailles (>0,5 µm) : bactéries, champignons ou débris cellulaires. Il est induit par de nombreux récepteurs phagocytaires tels que les récepteurs aux fragments cristallisables des immunoglobulines (FcR) et les récepteurs au complément (CR3). Ceux-ci induisent des cascades de signalisation différentes mais aboutissant, toutes deux, à un remodelage du cytosquelette d’actine et de la membrane plasmique. Il y alors formation d’une coupe phagocytaire entourant et enfermant la particule à internaliser dans un compartiment clos appelé phagosome. Alors que de nombreuses études ont permis de disséquer l’organisation des coupes phagocytaires induites par les FcR, le mécanisme de fermeture des phagosomes n’était pas élucidé. Par ailleurs, les mécanismes moléculaires impliqués dans la formation des phagosomes suite à l’engagement des CR3 sont moins bien décrits. Au cours de ce travail, nous avons analysé le rôle de la dynamine 2, une GTPase impliquée dans les mécanismes de fission des vésicules d’endocytose, au cours de la formation et de la fermeture des phagosomes. Nous avons utilisé un système expérimental original utilisant la microscopie à ondes évanescentes pour montrer, que la dynamine 2 est recrutée avec l’actine dans les coupes phagocytaires en formation et qu’elle s’accumule au site de fermeture des phagosomes dans des macrophages vivants. L’inhibition de son activité GTPase induit une inhibition de l’efficacité de phagocytose et un défaut de la dynamique de l’actine lors de l’extension des coupes phagocytaires. De façon surprenante, la dépolymérisation de l’actine conduit à un défaut de recrutement de la dynamine 2 au site de la phagocytose mettant en évidence une régulation croisée entre la dynamine 2 et l’actine. Enfin cette étude a montré que la dynamine 2 joue un rôle critique dans la scission du phagosome. Dans un second temps, nous avons initié l’étude des mécanismes impliqués dans la régulation de l’activité du récepteur au complément CR3. L’activation de ce récepteur phagocytaire, qui fait partie de la famille des intégrines, requiert un ancrage à l’actine nécessaire à la signalisation vers la polymérisation d’actine et à la formation des coupes phagocytaires. L’ensemble de ces résultats contribue à une meilleure connaissance des mécanismes moléculaires fins impliqués dans la phagocytose. / Phagocytosis is an important cellular mechanism. It plays a role in both the maintenance of tissue homeostasis and in the immune system. This process, performed by phagocytic cells, including dendritic cells, polymorphonuclear neutrophils or macrophages, enables daily ingestion and elimination of large particles (> 0.5 microns) e.g. bacteria, fungi or cellular debris. It is induced by many phagocytic receptors such as the receptors for crystallizable fragments of immunoglobulins (FcR) and complement receptor (CR3). These receptors induce different signaling cascades but ultimately lead to a remodelling of the actin cytoskeleton and the plasma membrane. Next there is the formation of a phagocytic cup which surrounds and encloses the ingested particle in a closed compartment called the phagosome. While many studies have dissected the phagocytic cup organization induced by the FcR, the mechanism of phagosome closure was not understood. Furthermore, the molecular mechanisms involved in phagosome formation following CR3 engagement are less well described. In this work, we analyzed the role of dynamin 2, a GTPase involved in fission mechanisms of endocytosis vesicles, and in the formation and closure of phagosomes. We used an original experimental system using the total internal reflection fluorescence microscopy (TIRFM) to show that dynamin 2 is recruited with actin during phagocytic cup formation and accumulates at the site of phagosome closure in living macrophages. The inhibition of its GTPase activity induced an inhibition of phagocytosis and a defect in actin dynamics during pseudopod extension. Surprisingly, the depolymerization of actin lead to a defective recruitment of dynamin 2 at the phagocytic site showing there is a cross-regulation between dynamin 2 and actin. Finally, this study showed that dynamin 2 plays a critical role in the scission of the phagosome. Secondly, we initiated the study of the mechanisms involved in regulating the activity of the complement receptor CR3. Enabling this phagocytic receptor, part of the integrin family, requires anchoring actin which is necessary for signaling to the actin polymerization and the formation of phagocytic cups. All these results contribute to a better understanding of the molecular mechanisms involved in phagocytosis purposes.
2

Rôle du peptide LL-37 dans le cancer du sein : son interaction avec la membrane plasmique stimule l'entrée de calcium et la migration cellulaire par l'activation des canaux ioniques TRPV2 et BKCa / Role of the LL-37 peptide in breast cancer : stimulation of calcium entry and cell migration through the TRPV2 and BKCa channels by its interaction with the plasma membrane

Gambade, Audrey 18 December 2015 (has links)
Le peptide antimicrobien LL-37 a été retrouvé surexprimé dans différents types de cancer et plus particulièrement dans le cancer du sein dans lequel il est associé au développement des métastases. Nous avons observé, in vitro, que la migration de trois lignées cancéreuses mammaires est augmentée par le peptide LL-37 et son énantiomère (D)-LL-37, excluant la fixation du peptide à un récepteur protéique. Sur les cellules cancéreuses mammaires MDA-MB-435s, le peptide se fixe à la membrane plasmique et diminue sa fluidité. La microscopie électronique localise LL-37 dans les cavéoles et à la surface de structures impliquées dans la migration cellulaire, les pseudopodes. LL-37 induit une entrée de calcium via le canal TRPV2 dont l’activité est augmentée par son recrutement dans les pseudopodes. Ce recrutement est dépendant de l’activation de la voie de signalisation PI3K/AKT induite par LL-37. L’entrée de calcium via TRPV2 est potentialisée par l’activation du canal potassique BKCa, localisé aussi dans les pseudopodes. Des ARN interférents contre TRPV2 inhibent à 70% la migration induite par LL-37, donnant un rôle prépondérant à ce canal dans les effets pro-migratoire du peptide. La fixation du peptide LL-37 aux membranes des cellules cancéreuses et l’activation de canaux ioniques constituent un nouvel axe de recherche pour comprendre le rôle du peptide dans la progression tumorale. / The antimicrobial peptide LL-37 is overexpressed in several types of cancer, among which breast cancer were it is associated with metastasis development. Our experiments on three mammary cancer cell lines have shown that LL-37 increases cell migration. Both its natural (L)-form and its (D)-enantiomer are equally active, excluding a specific binding to a protein receptor. On the MDA-MB-435s cell line, LL-37 attaches to plasma membrane and reduces its fluidity. Electron microscopy localized LL-37 on the surface of pseudopodia, structures implicated in cell migration, and in caveolae. LL-37 induces calcium entry via the TRPV2 channel, which is recruited to pseudopodia. Recruitment depends on activation of PI3K/AKT signaling induced by LL-37. Calcium entry via TRPV2 is potentiated by activation of the BKCa potassium channel also located in pseudopodia. TRPV2 suppression by RNA interference results in 70% reduction of cell migration induced by LL-37, attributing a crucial role of this channel to the promigratory effects of the peptide. Binding of LL-37 to cancer cell membranes and in consequence the activation of ion channels constitutes a novel research field to understand its role in tumor progression.

Page generated in 0.0455 seconds