• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wind Tunnel and Flight Testing of Active Flow Control on a UAV

Babbar, Yogesh 2010 May 1900 (has links)
Active flow control has been extensively explored in wind tunnel studies but successful in-flight implementation of an active flow control technology still remains a challenge. This thesis presents implementation of active flow control technology onboard a 33% scale Extra 330S ARF aircraft, wind tunnel studies and flight testing of fluidic actuators. The design and construction of the pulsed blowing system for stall suppression (LE actuator) and continuous blowing system for roll control (TE actuator) and pitch control have been presented. Full scale wind tunnel testing in 7̕ X 10 Oran W. Nicks low speed wind tunnel shows that the TE actuators are about 50% effective as the conventional ailerons. The LE actuator is found to be capable of suppressing stall from 12° to about 22°. Comparison of characteristics of Active elevator and conventional elevator in 3' X 4' low speed wind tunnel show that, the active elevator is as effective as of conventional elevator deflected at 5°. Flight tests show that TE actuators are able to control the aircraft in flight in banked turns. The measured roll rates in-flight support the wind tunnel test findings.
2

Turbulent Transition Behavior in a Low Pressure Turbine Subjected to Separated and Attached-Flow Conditions

Memory, Curtis L. 16 December 2010 (has links)
No description available.

Page generated in 0.0528 seconds