• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Study of the Wake behind a Circular Cylinder under Excitation

Chang, Tien-Li 30 July 2002 (has links)
This experiment is to investigate the effects of fluid with and without mass injection through a slit on the vortex shedding from a single cylinder. We research Reynolds Numbers on ranges from 800 to 4000. We used four kinds of ways which contain no mass injection, steady blowing, steady suction and oscillatory jet to study of the wake behind a circular cylinder under excitation in this experiment. No mass injection is measured for the sake of its reliability and comparability of experiment. Steady blowing and suction are applied to influence the wake flow. An oscillatory jet is used to influence the wake flow with varying frequencies and amplitudes. The experiment looks forward to use the results of this experiment so as to research into the effects on the wake flow, including the velocity values of fluctuation and turbulence intensity of the vortices structure, the dominant frequency in the flow pattern on a single cylinder. The main parameters in the study are the frequency, momentum and the location of the blowing and suction jet, which are a steady jet or unsteady oscillatory jet. Flow visualization has been carried out to investigate the interaction of steady or unsteady fluid perturbation and the vortex shedding of a cylinder.
2

Novel methods of drag reduction for squareback road vehicles

Littlewood, Rob January 2013 (has links)
Road vehicles are still largely a consumer product and as such the styling of a vehicle becomes a significant factor in how commercially successful a vehicle will become. The influence of styling combined with the numerous other factors to consider in a vehicle development programme means that the optimum aerodynamic package is not possible in real world applications. Aerodynamicists are continually looking for more discrete and innovative ways to reduce the drag of a vehicle. The current thesis adds to this work by investigating the influence of active flow control devices on the aerodynamic drag of square back style road vehicles. A number of different types of flow control are reviewed and the performance of synthetic jets and pulsed jets are investigated on a simple 2D cylinder flow case experimentally. A simplified ¼ scale vehicle model is equipped with active flow control actuators and their effects on the body drag investigated. The influence of the global wake size and the smaller scale in-wake structures on vehicle drag is investigated and discussed. Modification of a large vortex structure in the lower half of the wake is found to be a dominant mechanism by which model base pressure can be influenced. The total gains in power available are calculated and the potential for incorporating active flow control devices in current road vehicles is reviewed. Due to practicality limitations the active flow control devices are currently ruled out for implementation on a road vehicle. The knowledge gained about the vehicle model wake flow topology is later used to create drag reductions using a simple and discrete passive device. The passive modifications act to support claims made about the influence of in wake structures on the global base pressures and vehicle drag. The devices are also tested at full scale where modifications to the vehicle body forces were also observed.
3

Turbulent Transition Behavior in a Low Pressure Turbine Subjected to Separated and Attached-Flow Conditions

Memory, Curtis L. 16 December 2010 (has links)
No description available.

Page generated in 0.0778 seconds