• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Long-term In-service Evaluation of Two Bridges Designed with Fiber-Reinforced Polymer Girders

Kassner, Bernard Leonard 23 September 2004 (has links)
A group of researchers, engineers, and government transportation officials have teamed up to design two bridges with simply-supported FRP composite structural beams. The Toms Creek Bridge, located in Blacksburg, Virginia, has been in service for six years. Meanwhile, the Route 601 Bridge, located in Sugar Grove, Virginia, has been in service for two years. Researchers have conducted load tests at both bridges to determine if their performance has changed during their respective service lives. The key design parameters under consideration are: deflection, wheel load distribution, and dynamic load allowance. The results from the latest tests in 2003 yield little, yet statistically significant, changes in these key factors for both bridges. Most differences appear to be largely temperature related, although the reason behind this effect is unclear. For the Toms Creek Bridge, the largest average values from the 2003 tests are 440 me for service strain, 0.43 in. (L/484) for service deflection, 0.08 (S/11.1) for wheel load distribution, and 0.64 for dynamic load allowance. The values for the Route 601 Bridge are 220 me, 0.38 in. (L/1230), 0.34 (S/10.2), and 0.14 for the same corresponding paramters. The recommended design values for the dynamic load allowance in both bridges have been revised upwards to 1.35 and 0.50 for the Toms Creek Bridge and Route 601 Bridge, respectively, to account for variability in the data. With these increased factors, the largest strain in the toms Creek Bridge and Route 601 Bridge would be less than 13% and 12%, respectively, of ultimate strain. Therefore, the two bridges continue to provide a large factor of safety against failure. / Master of Science

Page generated in 0.0871 seconds