• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 9
  • 9
  • 9
  • 8
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Field Tests Performed on an Aluminum Deck Bridge

Prince, Robert T. 05 May 1998 (has links)
Studies have shown that over 30 percent of the bridges in the United States are structurally deficient, and/or over 50 years old. The majority of the highway bridges have reinforced concrete decks supported on steel or concrete girders. Over the years, weathering and deicing chemicals have caused spalling of the concrete surrounding the reinforcing steel, deteriorating many bridges to levels that often result in closure. Repairing or reconstructing the reinforced concrete deck to meet current design specifications is often not possible or feasible, and at times seems illogical due to the possibility of reoccurrence. Because of reinforced concrete's downfalls, there is a move toward alternative materials and designs for bridge deck replacements. In particular, Reynolds Metals Company has lead the movement toward the use of a shop-extruded aluminum deck system known as ALUMADECKTM. The purpose of this research is to evaluate data collected from full-scale testing under test truck loading of an in-service ALUMADECK bridge system. The bridge is known as the Little Buffalo Creek Bridge and is located in Mecklenburg County, VA. The topics researched from the load tests are the composite action amongst the deck and supporting members, the load distribution amongst supporting members, the dynamic load allowance for supporting members, and the developed deck stresses due to test truck loads. Evaluations of the research topics include comparisons to the methods employed in the design calculations provided by VDOT and to those of the American Association of State Highway and Transportation Officials (AASHTO) design specifications. / Master of Science
2

Reliability-based load management of the Red Deer River bridge

Jackson, Kristopher 05 October 2007
This thesis presents the results of an investigation into the evaluation of a selected test bridge using instrumentation to obtain site-specific factors contributing to the evaluation, with the ultimate objective of improving the estimate of the bridges reliability in order to assess allowable loading more accurately. The experimental portion of the research program involved instrumenting the test bridge with strain gauges, and recording field measurements using two forms of loading. The analytical portion of the research program involved the analysis of the bridge in the as-designed state, based on the design drawings and specification, followed by a re-analysis of the bridge using the site-specific factors measured on-site. The bridge was evaluated using methods outlined in the Canadian Highway Bridge Design Code CAN/CSA-S6-00 (CSA 2000). <p>The test bridge is located near the community of Hudson Bay, Saskatchewan. The bridge is constructed of steel-reinforced concrete, and there are three, three-span arch-shaped girders. There are also external steel bars added after initial construction to increase the midspan bending moment resistance. In total, 45 strain gauges were placed on the middle spans of the three girders to record strain induced by two forms of loading: controlled loading, in which a truck of known weight and dimensions was driven over the bridge in a number of pre-determined configurations, and in-situ loading, in which normal truck traffic was used. The current allowable loading on the bridge is a gross vehicle weight of 62.5 t, although increasing the allowable loading to 110 t has been proposed, along with two strengthening alternatives to make this increased loading feasible. <p>To provide a base-line analysis for comparison purposes, the bridge was first evaluated based strictly on information taken from the design drawings and specifications. The evaluation was performed using the load and resistance factor method, in which load and resistance factors were used to account for uncertainty, as well as by the mean load method, in which statistical properties of the variables parameters included in the design were used to account for uncertainty. The result of the load and resistance factor method was a live load capacity factor, indicating the overall rating of the bridge. In addition to the live load capacity factor, the mean load method was also used to determine the reliability index. The results of the as-designed analysis showed that the mean load method gave more conservative estimates of the bridge capacity. Furthermore, it was determined that, based on these assessments, the bridge would not have sufficient capacity to carry the proposed 110 t truck loads.<p>The bridge was re-evaluated using site-specific factors with the mean load method. Using the measured strains, statistical parameters were determined for live load effects, distribution factors, dynamic load allowance, and resistance. Statistical parameters that could not be obtained readily through testing were obtained from the literature. The results indicated that code-predicted estimates of a number of factors were highly conservative. Flexural and shear load effects in the girders were found to be less than 15% of the theoretical predictions, as a result of apparent arching action in the girders, generating significant axial forces. For this arching action to occur, horizontal restraint was required at the supports, either through unanticipated restraint in the bearings, or tension tie action of the tensile girder reinforcement. Furthermore, the dynamic amplification was found to be less than 1.0. The resulting reliability indices indicated that the bridge would be safe under the proposed increased allowable loading (110 t). <p>Finite element models were used to confirm the dynamic amplification observations and examine the effects of different degrees of bearing restraint. The model showed results similar to those measured for dynamic amplification. It was found that if the bearings were to become completely fixed against horizontal translation, the bridge would become overloaded as a result of increased shear effects, demonstrating the need for proper bearing maintenance. <p>An analysis of relative costs was completed to determine the most cost-effective solution for hauling logs. Assumptions were made regarding truck and maintenance and operating costs. The results indicated that the most economic solution was to use the method outlined in the research to increase the allowable loading on the bridge to 110 t, over the strengthening alternatives and simply leaving the bridge in the current state.
3

Reliability-based load management of the Red Deer River bridge

Jackson, Kristopher 05 October 2007 (has links)
This thesis presents the results of an investigation into the evaluation of a selected test bridge using instrumentation to obtain site-specific factors contributing to the evaluation, with the ultimate objective of improving the estimate of the bridges reliability in order to assess allowable loading more accurately. The experimental portion of the research program involved instrumenting the test bridge with strain gauges, and recording field measurements using two forms of loading. The analytical portion of the research program involved the analysis of the bridge in the as-designed state, based on the design drawings and specification, followed by a re-analysis of the bridge using the site-specific factors measured on-site. The bridge was evaluated using methods outlined in the Canadian Highway Bridge Design Code CAN/CSA-S6-00 (CSA 2000). <p>The test bridge is located near the community of Hudson Bay, Saskatchewan. The bridge is constructed of steel-reinforced concrete, and there are three, three-span arch-shaped girders. There are also external steel bars added after initial construction to increase the midspan bending moment resistance. In total, 45 strain gauges were placed on the middle spans of the three girders to record strain induced by two forms of loading: controlled loading, in which a truck of known weight and dimensions was driven over the bridge in a number of pre-determined configurations, and in-situ loading, in which normal truck traffic was used. The current allowable loading on the bridge is a gross vehicle weight of 62.5 t, although increasing the allowable loading to 110 t has been proposed, along with two strengthening alternatives to make this increased loading feasible. <p>To provide a base-line analysis for comparison purposes, the bridge was first evaluated based strictly on information taken from the design drawings and specifications. The evaluation was performed using the load and resistance factor method, in which load and resistance factors were used to account for uncertainty, as well as by the mean load method, in which statistical properties of the variables parameters included in the design were used to account for uncertainty. The result of the load and resistance factor method was a live load capacity factor, indicating the overall rating of the bridge. In addition to the live load capacity factor, the mean load method was also used to determine the reliability index. The results of the as-designed analysis showed that the mean load method gave more conservative estimates of the bridge capacity. Furthermore, it was determined that, based on these assessments, the bridge would not have sufficient capacity to carry the proposed 110 t truck loads.<p>The bridge was re-evaluated using site-specific factors with the mean load method. Using the measured strains, statistical parameters were determined for live load effects, distribution factors, dynamic load allowance, and resistance. Statistical parameters that could not be obtained readily through testing were obtained from the literature. The results indicated that code-predicted estimates of a number of factors were highly conservative. Flexural and shear load effects in the girders were found to be less than 15% of the theoretical predictions, as a result of apparent arching action in the girders, generating significant axial forces. For this arching action to occur, horizontal restraint was required at the supports, either through unanticipated restraint in the bearings, or tension tie action of the tensile girder reinforcement. Furthermore, the dynamic amplification was found to be less than 1.0. The resulting reliability indices indicated that the bridge would be safe under the proposed increased allowable loading (110 t). <p>Finite element models were used to confirm the dynamic amplification observations and examine the effects of different degrees of bearing restraint. The model showed results similar to those measured for dynamic amplification. It was found that if the bearings were to become completely fixed against horizontal translation, the bridge would become overloaded as a result of increased shear effects, demonstrating the need for proper bearing maintenance. <p>An analysis of relative costs was completed to determine the most cost-effective solution for hauling logs. Assumptions were made regarding truck and maintenance and operating costs. The results indicated that the most economic solution was to use the method outlined in the research to increase the allowable loading on the bridge to 110 t, over the strengthening alternatives and simply leaving the bridge in the current state.
4

Dynamic Behavior of Composite Adjacent Pre-Stressed Concrete Box Beams Bridges

Ali, Hajir A. 23 May 2022 (has links)
No description available.
5

Long-term In-service Evaluation of Two Bridges Designed with Fiber-Reinforced Polymer Girders

Kassner, Bernard Leonard 23 September 2004 (has links)
A group of researchers, engineers, and government transportation officials have teamed up to design two bridges with simply-supported FRP composite structural beams. The Toms Creek Bridge, located in Blacksburg, Virginia, has been in service for six years. Meanwhile, the Route 601 Bridge, located in Sugar Grove, Virginia, has been in service for two years. Researchers have conducted load tests at both bridges to determine if their performance has changed during their respective service lives. The key design parameters under consideration are: deflection, wheel load distribution, and dynamic load allowance. The results from the latest tests in 2003 yield little, yet statistically significant, changes in these key factors for both bridges. Most differences appear to be largely temperature related, although the reason behind this effect is unclear. For the Toms Creek Bridge, the largest average values from the 2003 tests are 440 me for service strain, 0.43 in. (L/484) for service deflection, 0.08 (S/11.1) for wheel load distribution, and 0.64 for dynamic load allowance. The values for the Route 601 Bridge are 220 me, 0.38 in. (L/1230), 0.34 (S/10.2), and 0.14 for the same corresponding paramters. The recommended design values for the dynamic load allowance in both bridges have been revised upwards to 1.35 and 0.50 for the Toms Creek Bridge and Route 601 Bridge, respectively, to account for variability in the data. With these increased factors, the largest strain in the toms Creek Bridge and Route 601 Bridge would be less than 13% and 12%, respectively, of ultimate strain. Therefore, the two bridges continue to provide a large factor of safety against failure. / Master of Science
6

Lateral Load Distribution and Deck Design Recommendations for the Sandwich Plate System (SPS) in Bridge Applications

Harris, Devin K. 07 December 2007 (has links)
The deterioration of the nation's civil infrastructure has prompted the investigation of numerous solutions to offset the problem. Some of these solutions have come in the form of innovative materials for new construction, whereas others have considered rehabilitation techniques for repairing existing infrastructure. A relatively new system that appears capable of encompassing both of these solution methodologies is the Sandwich Plate System (SPS), a composite bridge deck system that can be used in both new construction or for rehabilitation applications. SPS consists of steel face plates bonded to a rigid polyurethane core; a typical bridge application utilizes SPS primarily as a bridge deck acting compositely with conventional support girders. As a result of this technology being relatively new to the bridge market, design methods have yet to be established. This research aims to close this gap by investigating some of the key design issues considered to be limiting factors in implementation of SPS. The key issues that will be studied include lateral load distribution, dynamic load allowance and deck design methodologies. With SPS being new to the market, there has only been a single bridge application, limiting the investigations of in-service behavior. The Shenley Bridge was tested under live load conditions to determine in-service behavior with an emphasis on lateral load distribution and dynamic load allowance. Both static and dynamic testing were conducted. Results from the testing allowed for the determination of lateral load distribution factors and dynamic load allowance of an in-service SPS bridge. These results also provided a means to validate a finite element modeling approach which would could as the foundation for the remaining investigations on lateral load distribution and dynamic load allowance. The limited population of SPS bridges required the use of analytical methods of analysis for this study. These analytical models included finite element models and a stiffened plate model. The models were intended to be simple, but capable of predicting global response such as lateral load distribution and dynamic load allowance. The finite element models are shown to provide accurate predictions of the global response, but the stiffened plate approach was not as accurate. A parametric investigation, using the finite element models, was initiated to determine if the lateral load distribution characteristics and vibration response of SPS varied significantly from conventional systems. Results from this study suggest that the behavior of SPS does differ somewhat from conventional systems, but the response can be accommodated with current AASHTO LRFD bridge design provisions as a result of their conservativeness. In addition to characterizing global response, a deck design approach was developed. In this approach the SPS deck was represented as a plate structure, which allowed for the consideration of the key design limit states within the AASHTO LRFD specification. Based on the plate analyses, it was concluded that the design of SPS decks is stiffness-controlled as limited by the AASHTO LRFD specification deflection limits for lightweight metal decks. These limits allowed for the development of a method for sizing SPS decks to satisfy stiffness requirements. / Ph. D.
7

Evaluation of the In-Servic Performance of the Tom's Creek Bridge

Neely, William Douglas 26 May 2000 (has links)
The Tom's Creek Bridge is a small-scale demonstration project involving the use of fiber-reinforced polymer (FRP) composite girders as the main load carrying members. The project is intended to serve two purposes. First, by calculating bridge design parameters such as the dynamic load allowance, transverse wheel load distribution and deflections under service loading, the Tom's Creek Bridge will aid in modifying current AASHTO bridge design standards for use with FRP composite materials. Second, by evaluating the FRP girders after being exposed to service conditions, the project will begin to answer questions about the long-term performance of these advanced composite material beams when used in bridge design. This thesis details the In-Service analysis of the Tom's Creek Bridge. Five load tests, at six month intervals, were conducted on the bridge. Using mid-span strain and deflection data gathered from the FRP composite girders during these tests the above mentioned bridge design parameters have been determined. The Tom's Creek Bridge was determined to have a dynamic load allowance, IM, of 0.90, a transverse wheel load distribution factor, g, of 0.101 and a maximum deflection of L/488. Two bridge girders were removed from the Tom's Creek Bridge after fifteen months of service loading. These FRP composite girders were tested at the Structures and Materials Research Laboratory at Virginia Tech for stiffness and ultimate strength and compared to pre-service values for the same beams. This analysis indicates that after fifteen months of service, the FRP composite girders have not lost a significant amount of either stiffness or ultimate strength. / Master of Science
8

Live Load Testing and Analysis of the Southbound Span of U.S. Route 15 over Interstate-66

Collins, William Norfleet 25 August 2010 (has links)
more funding must be allocated for their rehabilitation or replacement. The Federal Highway Administration's (FHWA) Long-Term Bridge Performance (LTBP) Program has been developed to help bridge stakeholders make the best decisions concerning the allocation of these funds. This is done through the use of high quality data obtained through numerous testing processes. As part of the LTBP Pilot Program, researchers have performed live load tests on the U.S. Route 15 Southbound bridge over Interstate-66. The main performance and behavior characteristics focused on are service strain and deflection, wheel load distribution, dynamic load allowance, and rotational behavior of bridge bearings. Data from this test will be used as a tool in developing and refining a plan for long-term bridge monitoring. This includes identifying the primarily loaded girders and their expected range of response under ambient traffic conditions. Information obtained from this test will also aid in the refinement of finite element models by offering insight into the performance of individual bridge components, as well as overall global behavior. Finally, the methods and results of this test have been documented to allow for comparison with future testing of this bridge, which will yield information concerning the changes in bridge behavior over time. / Master of Science
9

Determination of AASHTO Bridge Design Parameters through Field Evaluation of the Rt. 601 Bridge: A Bridge Utilizing Strongwell 36 in. Fiber-Reinforced Polymer Double Web Beams as the Main Load Carrying Members

Restrepo, Edgar Salom 18 December 2002 (has links)
The Route 601 Bridge in Sugar Grove, Virginia spans 39 ft over Dickey Creek. The Bridge is the first to use the Strongwell 36 in. fiber reinforced polymer (FRP) double web beam (DWB) in its superstructure. Replacement of the old bridge began in June 2001, and construction of the new bridge was completed in October 2001. The bridge was field tested in October 2001 and June 2002. This thesis details the field evaluation of the Rt. 601 Bridge. Using mid span deflection and strain data from the October 2001 and June 2002 field tests, the primary goal of this research was to determine the following AASHTO bridge design parameters: wheel load distribution factor g, dynamic load allowance IM, and maximum deflection. The wheel load distribution factor was determined to be S/5, a dynamic load allowance was determined to be 0.30, and the maximum deflection of the bridge was L/1500. Deflection results were lower than the AASHTO L/800 limit. This discrepancy is attributed to partial composite action of the deck-to-girder connections, bearing restraint at the supports, and contribution of guardrail stiffness. Secondary goals of this research were to quantify the effect of diaphragm removal on girder distribution factor, determine torsion and axial effects of the FRP girders, compare responses to multiple lane symmetrical loading to superimposed single lane response, and compare the field test results to a finite element and a finite difference model. It was found that diaphragm removal had a small effect on the wheel load distribution factor. Torsional and axial effects were small. The bridge response to multilane loading coincided with superimposed single lane truck passes, and curb-stiffening effects in a finite difference model improved the accuracy of modeling the Rt. 601 Bridge behavior. / Master of Science

Page generated in 0.0928 seconds