• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 20
  • 14
  • 6
  • 6
  • 6
  • 5
  • 4
  • 2
  • Tagged with
  • 158
  • 158
  • 67
  • 35
  • 33
  • 31
  • 29
  • 27
  • 27
  • 25
  • 24
  • 24
  • 24
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Identification of trihalide photodissociation patterns by global vibrational wavepacket analysis of broadband magic-angle transient absorption data / Identifikation von Trihalidphotodissoziationsmustern mittels globaler Vibrationswellenpaketanalyse von breitbandigen, unter magischem Winkel gemessenen, transienten Absorptionsdaten

Schott, Sebastian January 2018 (has links) (PDF)
The invention of laser pulse shapers allowed for various quantum control experiments, where a chemical reaction is guided by specifically tailored laser pulses. However, despite of the prominent role of the liquid phase in chemistry, no successful attempt for controlling the selectivity of a bond-fission reaction has yet been reported in this state of matter. Promising candidates for such an experiment are C$_{\infty\mathrm{v}}$-symmetric trihalide anions with two different chemical bonds like $\ce{I2Cl-}$, because these molecules notionally offer the most simplest selectivity-control scenario of breaking either the one or the other bond and they are expected to dissociate under ultraviolet (UV) irradiation like it is known for the most-studied trihalide $\ce{I3-}$. In order to investigate in this thesis the possibility that the dissociation reaction of such trihalides branches into two different photofragments, the ultrafast photodissociation dynamics of $\ce{I3-}$, $\ce{Br3-}$, $\ce{IBr2-}$ and $\ce{ICl2-}$ (point group D$_{\infty\mathrm{h}}$) as well as of $\ce{I2Br-}$ and $\ce{I2Cl-}$ (point group C$_{\infty\mathrm{v}}$) in dichloromethane solution were measured with broadband transient absorption spectroscopy in magic-angle configuration. The identification of the reaction pathway(s) relies on vibrational wavepacket oscillations, which survive the dissociation process and therefore carry not only informations about the reactant trihalides but also about the fragment dihalides. These characteristic vibrational wavenumbers were extracted from the measured transient absorption spectra by globally fitting the population dynamics together with the wavepacket dynamics. Until recently, such a combined model function was not available in the well-established fitting tool Glotaran. This made it inevitable to develop a custom implementation of the underlying variable-projection fitting algorithm, for which the computer-algebra software Mathematica was chosen. Mathematica's sophisticated built-in functions allow not only for a high flexibility in constructing arbitrary model functions, but also offer the possibility to automatically calculate the derivative(s) of a model function. This allows the fitting procedure to use the exact Jacobian matrix instead of approximating it with the finite difference method. Against the expectation, only one of the two thinkable photodissociation channels was found for each of the investigated C$_{\infty\mathrm{v}}$ trihalides. Since the photofragments recombine, their absorption signal as well as the reactant ground state bleach recover. This happens in a biexponential manner, which in the case of $\ce{I3-}$ was interpreted by Ruhman and coworkers with the direct formation of a neutral dihalogen fragment $\ce{I2}$ beside the negatively charged dihalide fragment $\ce{I2-}$. In this thesis, such a direct reaction channel was not found and instead the fast component of the biexponential decay is explained with vibrational excess energy mediating the recombination-preceding electron transfer process $\ce{I2- + I -> I2 + I-}$, while the slow component is attributed to cooled-down fragments. In addition to the trihalide experiments, the possibility of a magic-angle configuration for polarization-shaping control experiments was theoretically investigated in this thesis by deriving magic-angle conditions for the third-order electric-dipole response signal of arbitrarily polarized laser pulses. Furthermore, the subtleties of anisotropy signals violating the well-known range of \numrange{-0.2}{0.4} were studied. / Die Erfindung von Laserpulsformern ermöglichte eine Vielzahl von Quantenkontrollexperimenten, bei denen eine chemische Reaktionen mittels maßgeschneiderten Laserpulsen gelenkt wird. Allerdings wurde trotz der bedeutenden Rolle der flüssigen Phase in der Chemie bis heute kein erfolgreicher Versuch publiziert in diesem Aggregatszustand die Selektivität bei der Spaltung chemischer Bindungen zu kontrollieren. Vielversprechende Kandidaten für ein derartiges Experiment sind C$_{\infty\mathrm{v}}$-symmetrische Trihalidanionen mit zwei verschiedenen chemischen Bindungen, wie z.B. $\ce{I2Cl-}$, da diese Moleküle prinzipiell das einfachste Kontrollszenario, in dem entweder die eine oder die andere Bindung gespalten wird, ermöglichen und, wie vom meist untersuchten Trihalid $\ce{I3-}$ bekannt, eine Dissoziationsreaktion unter ultravioletter (UV) Bestrahlung erwartet wird. Um im Rahmen dieser Arbeit zu untersuchen, ob sich die Dissoziationsreaktion solcher Trihalide in zwei verschiedene Photofragmente aufzweigt, wurde die ultraschnelle Photodissoziationdynamik von $\ce{I3-}$, $\ce{Br3-}$, $\ce{IBr2-}$ und $\ce{ICl2-}$ (Punktgruppe D$_{\infty\mathrm{h}}$) sowie von $\ce{I2Br-}$ und $\ce{I2Cl-}$ (Punktgruppe C$_{\infty\mathrm{v}}$) in Dichlormethanlösung mittels breitbandiger transienter Absorptionsspektroskopie in der Magischer-Winkel-Konfiguration gemessen. Die Identifikation der Reaktionspfade stützt sich auf die Oszillation von Schwingungswellenpaketen, die den Dissoziationsprozess überstehen und folglich nicht nur Informationen über die Trihalidedukte sondern auch über die Dihalidprodukte tragen. Diese charakteristischen Schwingungswellenzahlen wurden aus jedem gemessenen transienten Absorptionsspektrum durch einen globalen Fit der Populationsdynamik zusammen mit der Wellenpaketdynamik extrahiert. Bis vor Kurzem war solch eine kombinierte Modellfunktion in dem gängigen Fitwerkzeug Glotaran nicht verfügbar. Dies machte es erforderlich eine eigene Implementation des zugrunde liegenden Fitalgorithmus der variablen Projektionen zu entwickeln, wofür die Computeralgebrasoftware Mathematica gewählt wurde. Mathematicas Funktionsumfang erlaubt nicht nur eine große Flexibilität bei der Konstruktion beliebiger Modellfunktionen, sondern bietet auch die Möglichkeit, die Ableitungen einer Modellfunktion automatisch zu berechnen. Dies erlaubt der Fitprozedur die exakte Jacobi-Matrix zu verwenden, anstatt diese mittels der Finite-Differenzen-Methode zu approximieren. Wider den Erwartungen wurde für jedes der untersuchten C$_{\infty\mathrm{v}}$ Trihalide nur einer der zwei denkbaren Photodissoziationskanäle beobachtet. Da die Photofragmente rekombinieren, klingen deren Absorptionssignal und das Grundzustandsausbleichen des Edukts wieder ab. Dies passiert stets in biexponentieller Form, was im Fall von $\ce{I3-}$ von Ruhman und Kollegen mit der direkten Bildung von neutralen Dihalogenfragmenten $\ce{I2}$ neben den negativ geladenen Dihalidfragmenten $\ce{I2-}$ interpretiert wurde. Im Rahmen dieser Arbeit ließ sich ein solcher direkter Reaktionskanal nicht beobachten. Stattdessen wird die schnelle Komponente des biexponentiellen Zerfalls mit überschüssiger Vibrationsenergie erklärt, die den der Rekombination vorrangehenden Elektrontransferprozess $\ce{I2- + I -> I2 + I-}$ begünstigt, während die langsame Komponente abgekühlten Fragmenten zugeordnet wird. Zusätzlich zu den Tihalidexperimenten wurde durch Herleitung Magischer-Winkel-Bedingungen für Antwortsignale aus elektrischer Dipolwechselwirkung dritter Ordnung mit beliebig polarisierten Laserpulsen theoretisch untersucht, ob eine Magischer-Winkel-Konfiguration für Polarisationsformungs-Kontrollexperimente möglich ist. Weiterhing wurden die Feinheiten anisotroper Signale, die den gut bekannten Bereich von \numrange[range-phrase=~bis~]{-0.2}{0.4} verletzten, untersucht.
12

Femtosecond Dynamics of Small Polyatomic Molecules in Solution: A Combined Experimental and Computational Approach

El-Khoury, Patrick Z. 20 July 2010 (has links)
No description available.
13

Optical Characterization of Mechanical and Electronic Properties of Visible to Infrared Semiconductor Nanowires

Wang, Yuda 27 May 2016 (has links)
No description available.
14

Novel Free-Carrier Pump/Probe Techniques for the Characterization of Silicon

Boyd, Kevin January 2018 (has links)
Two novel pump/probe techniques have been developed for measuring the recombination lifetime in crystalline silicon wafers. The first technique, single-beam pump/probe, uses one laser as both pump and probe. The second technique, quasi-steady state free-carrier absorption, measures lifetime under quasi-steady state conditions. These techniques are supported by a general mathematical model that predicts the experimental signal accounting for the 3D charge-carrier transport and recombination within the semiconductor. The predictions of the model are validated experimentally, and quantitative agreement is found between the model and experimental results for both techniques. The recombination lifetime measured by these techniques is verified independently using a standard pump/probe method, and the results are in agreement with this work. Single-beam pump/probe is a first-time demonstration of a technique capable of measuring lifetime in silicon using a single laser beam. It dramatically simplifies traditional pump/probe measurements by completely eliminating the second laser beam. QSS-FCA is the first quasi-steady state technique that can be calibrated in situ without the requirement of a calibrated reference wafer. The calibration constant is the free-carrier absorption cross section of silicon, which is a material constant. QSS-FCA is able to measure this cross section to a higher precision than what has been reported in the literature. Precise measurement of this constant opens up the possibility of studying more fundamental physics of silicon using QSS-FCA. / Thesis / Doctor of Philosophy (PhD)
15

Carrier Lifetime and Diffusion Measurement using Free-carrier Absorption Imaging

Gao, Shuaiwen January 2020 (has links)
At the moment, when energy and environmental issues are of concerned in our society, photovoltaic technology has received tremendous development and demand. Because carrier lifetime and diffusion coefficient are the important indicators to determine the recombination level, which influences the efficiency of solar cells to a large extent, they are regarded as key in choosing solar cell materials. A technique for effective lifetime measurement, modulated free-carrier absorption (FCA), can extract lifetime and diffusion coefficient simultaneously, which is supported by a general mathematical model that predicts the experimental signal accounting for the 3-dimensional (3D) charge-carrier transport and recombination within the semiconductor. A single mode 1064 nm laser modulated by an EO modulator is used as the pump and a 2050 nm modulated LED is used as probe in this experiment as the pump/probe parts. An IR camera detects the frequency-domain diffusion image from the tested silicon sample at the tested frequency range between 1 kHz to 200 kHz and the lifetime can be extracted by frequency-domain free-carrier concentration equation, which is a Lorentzian model. By simulating the diffusion data from the camera with the 3D free-carrier absorption model, we can extract lifetime and diffusion coefficient simultaneously. The fitted lifetime from frequency-domain free-carrier absorption equation is 33.5 ± 1.3 μs, and the fitted lifetime from this 3D FCA model is 32.8 ± 1.5 μs, which match to within the error bars. The fitted diffusion coefficient from this 3D FCA model is 15.6 ± 0.7 cm2/s, which agrees with the theoretical value of 16 cm2/s for silicon. Good quantitative agreement is found among the model, experimental data, and theory. / Thesis / Master of Applied Science (MASc)
16

Die Dissoziations- und Rekombinations-Reaktion von Jodmolekülen in mikroporösen Porosil-Kristalliten auf der Femtosekunden-Zeitskala / The femtosecond time resolved dissociation and recombination reaction of Iodine molecules which are resided in microporous crystalline Porosils

Flachenecker, Günter January 2002 (has links) (PDF)
In dieser Arbeit wurde die unimolekulare Dissoziations- und Rekombinations-Reaktion von Jodmolekülen untersucht, die in mikroporösen Porosil-Kristalliten eingelagert waren. Hierfür wurden sowohl experimentelle Pump-Probe-Experimente als auch theoretische Untersuchungen auf der Femtosekunden-Zeitskala durchgeführt. Die Idee, die diesen Experimenten zugrunde lag, bestand darin, zu erfahren, in welcher Weise und in welchem Maße die Struktur der Umgebung einen Einfluss auf die elementaren dynamischen Prozesse der Reaktion ausübt. Die hier untersuchten Systeme I$_2$ in DDR-, TON-, FER- und MFI-Porosilen sind Modellsysteme für komplexere Moleküle, eingelagert in einer mikroporösen kristallinen Umgebung. / The thesis presents experimental as well as theoretical investigations of the unimolecular reaction of iodine molecules embedded in different porosils. The elementary steps of the reaction could be accessed using femtosecond time-resolved pump-probe spectroscopy. The main goal of the research work was to learn more about the influence of the surroundings of the reacting molecules on the reaction dynamics resulting in dissociation and recombination processes. The iodine molecules enclosed in varying geometrical structures of DDR, TON, FER, and MFI porosils can be considered models for more complex molecular systems even including elementary catalytical processes in the microporous zeolites.
17

Femtosecond Transient Absorption Spectroscopy – Technical Improvements and Applications to Ultrafast Molecular Phenomena / Femtosekundenzeitaufgelöste Absorptionsspektroskopie – Technische Verbesserungen und Anwendungen auf ultraschnelle molekulare Phänomene

Kanal, Florian January 2015 (has links) (PDF)
Photoinduced processes are nowadays studied with a huge variety of spectroscopic methods. In the liquid phase, transient absorption spectroscopy is probably the most versatile pump–probe technique used to study light-induced molecular phenomena. Optical time-resolved spectroscopy is established in a large number of laboratories and is still further being developed with respect to many technical aspects. Nevertheless, the full potential of shortening the data-acquisition time—necessary for the investigation of rapidly photodegrading samples and observation of macroscopically fast processes—achievable with high-repetition-rate laser systems and shot-to-shot detection was not fully exploited. Especially, shot-to-shot detection is highly beneficial due to the high correlation of subsequent laser pulses. The development and implementation of 100 kHz broadband shot-to-shot data acquisition was presented in Chapter 3. For an established laser dye as a benchmark system, ultrafast excited-state dynamics were measured for the first time with broadband shot-to-shot detection at 100 kHz. An analysis of both the noise characteristics of the employed laser and the correlation of subsequent pulses quantified the advantage of shot-to-shot data acquisition. In the utilized software environment, the time for measuring a complete data set could be sped up by a factor of three or even higher compared to a laser system working at 1 kHz. So far, the limiting factor is the data processing and the movement of the mechanical delay stage. Nevertheless, the new shot-to-shot detection has the potential to shorten the measurement time up to a factor of 100. The data quality is improved by a factor of three when the hitherto conventional averaging scheme is compared to shot-to-shot acquisition for the same number of laser pulses. The expansion of shot-to-shot data acquisition for high repetition rates will allow studies on sensitive samples as exposure times can strongly be reduced to achieve the same signal-to-noise ratio. In addition, multidimensional spectroscopy can also be extended to high-repetition shot-to-shot readout allowing an efficient recording of data. Therefore, in future experiments, dynamics and couplings in sensitive samples and kinetic processes could be studied in more detail. Complex photophysical and photochemical phenomena are subject of many fields of research. Many of these multifaceted processes are not yet fully understood. Therefore, a possible approach is the elucidation of single reaction steps with the combination of transient absorption spectroscopy and a suitable, less complex model system. The systematic variation of the model system’s properties and environments, e.g., by chemical substitution or adequate choice of the solvent allows the determination of essential entities and reactivities thereof. Proper knowledge of an individual intermediate step and its determining factors can enhance the understanding of the complete photoreaction process. The application of transient absorption spectroscopy was shown for the optically-induced electron transfer in a series of donor–acceptor oligomers in Chapter 4. In general, the solvent relaxation times were isolated from the back-electron-transfer dynamics by a global lifetime analysis. For the smallest oligomeric structure where complete charge separation is possible, an ultrafast equilibration leads to charge recombination from the configuration showing the lowest barrier for recombination. The back-electron transfer strongly depends on the utilized solvent. Whereas in dichloromethane the back-electron transfer occurs with the maximum rate in the barrierless optimal region, the dynamics in toluene are governed by a Marcus inverted-region effect. The experimentally observed rates were also estimated by theoretical calculations of the respective barriers. The study did not only successfully unravel charge transfer in the oligomeric systems but also improved the understanding of the electron-transfer properties of larger polymers from an earlier study. Therefore, the combination of length variation and time-resolved spectroscopy is an important step towards the correct prediction of charge-carrier dynamics in macroscopic devices, e.g., for photovoltaics. The bond dissociation of a carbon-monoxide-releasing molecule in aqueous solution was studied in Chapter 5 as a prototype reaction for the photo-triggered breaking of a bond. It was shown that upon excitation only one carbon-monoxide ligand of the tricarbonyl complex is dissociated. A fraction of the photolyzed molecules restore the intact initial complex by geminate recombination within the temporal resolution of the experiment. However, the recombination could be detected by the hot ground-state infrared absorption of the complex. The detectable dicarbonyl formed upon CO release distributes excess energy from the absorbed photon into low-frequency modes which result in broadened absorption bands like for the recombined tricarbonyl. The free coordination site in the ligand sphere is filled with a solvent water molecule. Despite numerous studies of metal carbonyls studied in alkaneous solutions, the elucidation of the dynamics of a CORM in aqueous solution added another important detail to the photochemistry of this class of compounds. Experiments employing a second ultraviolet pump pulse did not trigger further CO dissociation and hence no formation of a monocarbonyl species; this might either be due to a different release mechanism without a further photochemical step or a strong spectral shift of the dicarbonyl’s absorption. Both reasons could explain why degenerate pump–repump–probe spectroscopy is inefficient. However, further experiments with ultraviolet probe pulses could substantiate whether the intermediate dicarbonyl reacts further photochemically or not. Apart from the model-system character of the CORM for bond dissociation, the study could determine exactly how many CO ligands are initially photolyzed off. Detailed knowledge of the release mechanism will affect the previous use and application as well as the further development of CORMs as therapeutic prodrugs to deliver high local concentrations of CO in cancerous or pathological tissue. Hence, the study of two-photon absorption properties which are important for in vivo applications of CORMs should be the main focus in further spectroscopic experiments. In Chapter 6, both abovementioned molecular phenomena—electron transfer and bond dissociation—were studied in combination. The photochemistry of a tetrazolium salt was studied in detail in a variety of different solvents. Being a relatively small molecule, the studied tetrazolium cation shows a multifaceted photochemistry and is therefore a textbook example for the combination of ultrafast molecular phenomena studied in different environments. Within femtoseconds, the tetrazolium ring is opened. The biradicalic species is then reduced via uptake of an electron from the solvent. The formation of the ring-open formazan photoproduct from this point of the reaction sequence on was excluded by experiments with acidic pH value of the solution. The ring-open radical is stabilized by ring-closure. The resulting tetrazolinyl radical was already observed in experiments with microsecond time resolution. However, its formation was observed in real time for the first time in this study. Irradiation of a tetrazoliumsalt solution yields different photoproduct distributions depending on the solvent. However, it was shown that all photoproducts have a tetrazolinyl radical as a common precursor on an ultrafast time scale. In combination with studies from the literature, the complete photochemical conversion of a tetrazolium salt was clarified in this study. Apart from the prototype character of the reaction sequence, the reaction mechanism will have impact on research associated with life science where tetrazolium assays are used on a daily basis without taking into account of photochemical conversion of the indicating tetrazolium ion and its photochemically formed reactive intermediates. On the basis of the tetrazolium-ion photochemistry, the rich photochemistry of the formazan photoproduct, including structural rearrangements and subsequent reformation of the tetrazolium ion, might be the subject of future studies. This thesis shows a method advancement and application of transient absorption spectroscopy to exemplary molecular model systems. The insights into each respective field did not only enlighten singular aspects, but have to be seen in a much larger context. Understanding complex photoinduced processes bottom-up by learning about their constituting steps—microscopically and on an ultrafast time scale—is an ideal method to approach understanding and prediction of phenomena in large molecular systems like biological or artificial architectures as for example used in photosynthetic light-harvesting and photovoltaics. / Photoinduzierte Prozesse werden heutzutage mit einer Vielzahl spektroskopischer Methoden untersucht. In der flüssigen Phase ist die transiente Absorptionsspektroskopie die wohl vielfältigst verwendete Anrege-Abfrage-Technik um lichtinduzierte molekulare Phänomene zu untersuchen. In vielen Forschungsgruppen ist die zeitaufgelöste optische Spektroskopie eine etablierte Methode und wird bezüglich vieler technischer Aspekte weiterentwickelt. Dennoch ist das volle Potential der für die Untersuchung photoempfindlicher Proben und die Beobachtung schneller makroskopischer Prozesse notwendigen Verkürzung der Datenaufnahmezeit, erreichbar mit hohen Laserwiederholraten und Schuss-zu-Schuss-Detektion, noch nicht vollständig ausgeschöpft worden. Die Schuss-zu-Schuss-Detektion ist insbesondere aufgrund der hohen Korrelation aufeinanderfolgender Laserpulse vorteilhaft. Die Entwicklung und technische Umsetzung der breitbandigen Schuss-zu-Schuss-Datenaufnahme mit 100 kHz wurde in Kapitel 3 vorgestellt. An einem bekannten Laserfarbstoff als Referenzsystem wurden zum ersten Mal Dynamiken des angeregten Zustands mit breitbandiger Schuss-zu-Schuss-Detektion mit 100 kHz gemessen. Durch eine Analyse sowohl der Rauschcharakteristika des verwendeten Lasersystems als auch der Korrelation aufeinanderfolgender Pulse konnten die Vorzüge der Schuss-zu-Schuss-Datenaufnahme quantitativ bestimmt werden. In der verwendeten Softwareumgebung konnte die Messzeit, verglichen mit einem Lasersystem mit einer Wiederholrate von 1 kHz, um mindestens einen Faktor drei beschleunigt werden. Zum jetzigen Zeitpunkt sind die Datenverarbeitung und das Verfahren des mechanischen Lineartisches zur Zeitverzögerung die limitierenden Faktoren der Messzeitverkürzung. Dennoch hat die neue Schuss-zu-Schuss-Detektion das Potential die Messzeit um einen Faktor bis zu 100 zu verkürzen. Die Datenqualität wurde um einen Faktor drei verbessert, wenn das bisher verwendete konventionelle Mittelungsverfahren mit der Schuss-zu-Schuss-Aufnahme für die gleiche Anzahl an Laserpulsen verglichen wird. Die Ausweitung der Schuss-zu-Schuss-Datenaufnahme für hohe Wiederholraten wird die Untersuchung empfindlicher Proben erlauben, da die Belichtungszeit zur Erreichung desselben Signal-zu-Rausch-Verhältnisses stark reduziert werden kann. Des Weiteren kann das Schuss-zu-Schuss-Auslesen auf die multidimensionale Spektroskopie ausgeweitet werden, was auch hier eine effiziente Datenaufnahme erlaubt. Aufgrund dessen werden in künftigen Experimenten Dynamiken und Kopplungen in empfindlichen Proben und kinetischen Prozessen genauer untersucht werden können. Komplexe photophysikalische und photochemische Phänomene sind Gegenstand vieler Forschungsgebiete. Etliche dieser vielschichtigen Prozesse sind noch nicht gänzlich verstanden. Eine mögliche Herangehensweise an dieses Problem ist die Aufklärung einzelner Reaktionsschritte mittels der Kombination von transienter Absorptionsspektroskopie mit geeigneten, weniger komplexen Modellsystemen. Die systematische Änderung der Eigenschaften und Umgebungen der Modellsysteme, beispielsweise durch chemische Substitution oder die Wahl eines geeigneten Lösungsmittels, erlaubt die Bestimmung wesentlicher Bestandteile und deren Reaktivitäten. Fundierte Kenntnis einzelner Zwischenschritte und deren bestimmende Faktoren können das Verständnis des lichtinduzierten Gesamtprozesses verbessern. Die Anwendung der transienten Absorptionsspektroskopie auf den optisch-induzierten Elektronentransfer in einer Reihe von Donor-Akzeptor-Oligomeren wurde in Kapitel 4 gezeigt. Durch globale Datenanalyse wurden die Relaxationszeiten des Lösungsmittels von den Raten des Elektronenrücktransfers getrennt. In der kleinsten oligomeren Struktur welche eine vollständige Ladungstrennung erlaubt, führt eine ultraschnelle Gleichgewichtseinstellung zur Ladungsrekombination in der Konfiguration mit der kleinsten Rekombinationsbarriere. Der Elektronenrücktransfer hängt stark vom verwendeten Lösungsmittel ab. Während der Elektronenrücktransfer in Dichlormethan mit der maximalen Rate in der optimalen Region ohne Barriere stattfindet, ist die Dynamik in Toluol vom Effekt der Marcus-invertierten Region bestimmt. Die experimentell beobachteten Raten wurden durch theoretische Berechnung der jeweiligen Barrieren abgeschätzt. Diese Arbeit hat nicht nur erfolgreich den Ladungstransfer in den oligomeren System entschlüsselt, sondern auch das Verständnis der Elektronentransfereigenschaften größerer Polymere aus vorherigen Studien erweitert. Aus diesem Grund ist die Kombination der Längenvariation mit der zeitaufgelösten Spektroskopie ein wichtiger Schritt in Richtung der korrekten Vorhersage von Ladungsträgerdynamiken in makroskopischen Bauteilen, wie sie beispielsweise in der Photovoltaik verwendet werden. Die Bindungsdissoziation eines Kohlenmonoxid-freisetzenden Moleküls (CORM) in wässriger Lösung wurde in Kapitel 5 als prototypische Reaktion für die lichtinduzierte Spaltung einer Bindung untersucht. Es konnte gezeigt werden, dass nach Anregung nur ein Kohlenmonoxid-Ligand des Tricarbonyl-Komplexes abgespalten wird. Ein Teil der photolysierten Moleküle stellt den intakten Anfangskomplex durch paarweise Rekombination innerhalb der Zeitauflösung des Experiments wieder her. Dennoch konnte die paarweise Rekombination durch die Grundzustandsabsorption des schwingungsangeregten Komplexes im Infraroten detektiert werden. Das nach CO-Freisetzung beobachtete Dicarbonyl verteilt die Überschussenergie des absorbierten Photons auf Schwingungsmoden niedriger Frequenz, was zum Auftreten verbreiterter Absorptionsbanden f¨uhrt. Die freie Koordinationsstelle in der Ligandensphäre wird mit einem Wassermolekül aufgefüllt. Trotz zahlreicher Studien zu Metallcarbonylen in alkanischen Lösungsmitteln fügt die Aufklärung der Dynamiken des CORMs in wässriger Lösung ein wichtiges Detail der Photochemie dieser Verbindungsklasse hinzu. Experimente mit einem zweiten ultravioletten Anregepuls lösten keine weitere CO-Freisetzung und somit keine Bildung einer Monocarbonyl-Spezies aus. Der Grund hierfür mag entweder ein anderer Freisetzungsmechanismus ohne weiteren photochemischen Schritt oder eine große spektrale Verschiebung der Absorption des Dicarbonyls sein. Beide Gründe erklären, warum die Anrege-Wiederanrege-Abfrage-Spektroskopie keinen Effekt zeigt. Jedoch könnten weitere Experimente mit ultravioletten Abfragepulsen ergründen, ob das Dicarbonylintermediat photochemisch weiterreagiert oder nicht. Abgesehen vom Modellsystem-Charakter des CORMs für die Bindungsdissoziation konnte diese Untersuchung bestimmen, wie viele CO-Liganden ursprünglich freigesetzt werden. Die genaue Kenntnis des Freisetzungsmechanismus wird die bisherige Benutzung und Anwendung, sowie die zukünftige Entwicklung der CORMs als therapeutische Vorstufe zur Verabreichung hoher lokaler Konzentrationen an CO in karzinogenem und pathologischem Gewebe beeinflussen. Daher sollte die Untersuchung der Zweiphotonenabsorptionseigenschaften, welche für die in vivo Anwendung von CORMs eine wichtige Rolle spielen, in zukünftigen spektroskopischen Experimenten in den Vordergrund rücken. In Kapitel 6 wurde eine Kombination aus beiden oben erwähnten molekularen Phänomenen, Elektronentransfer und Bindungsspaltung, untersucht. Die Photochemie eines Tetrazoliumsalzes wurde detailliert in einer Auswahl unterschiedlicher Lösungsmittel untersucht. Als relativ kleines Molekül zeigt das untersuchte Tetrazoliumkation eine vielfältige Photochemie und ist daher ein Paradebeispiel für die Untersuchung kombinierter ultraschneller Phänomene in unterschiedlichen Umgebungen. Innerhalb von Femtosekunden wird der Tetrazoliumring geöffnet. Die biradikalische Spezies wird dann durch Elektronenaufnahme aus dem Lösungsmittel reduziert. Die Bildung des ringoffenen Formazan-Photoprodukts an dieser Stelle der Reaktionssequenz wurde durch Experimente in saurer Lösung ausgeschlossen. Das ringoffene Radikal wird durch einen Ringschluss stabilisiert. Das daraus entstehende Tetrazolinyl-Radikal wurde bereits in Experimenten mit Mikrosekundenzeitauflösung beobachtet. Die Bildung in Echtzeit wurde jedoch in dieser Arbeit zum ersten Mal beobachtet. Die Beleuchtung einer Tetrazoliumsalzlösung führt in Abhängigkeit des Lösungsmittels zu unterschiedlichen Photoproduktverteilungen. Auf einer ultraschnellen Zeitskala haben indessen alle Photoprodukte das Tetrazolinyl-Radikal als gemeinsame Vorstufe. In Verbindung mit literaturbekannten Studien wurde in dieser Arbeit die gesamte photochemische Umsetzung eines Tetrazoliumsalzes aufgeklärt. Abgesehen von dem prototypischen Charakter der Reaktionssequenz wird der entschlüsselte Reaktionsmechanismus Einfluss auf die Forschung in den Lebenswissenschaften haben, in welchen Tetrazoliumsalz-basierte Prüfverfahren täglich zur Anwendung kommen, wobei bislang die photochemische Umsetzung und die photochemisch gebildeten reaktiven Intermediate außer Acht gelassen werden. Auf Grundlage der Photochemie des Tetrazoliumions kann die vielschichtige Photochemie des Formazan-Photoprodukts, welche Umlagerungen und erneute Bildung des Tetrazoliumions beinhaltet, Gegenstand zukünftiger Untersuchungen sein. Diese Arbeit stellt die Methodenverbesserung und Anwendung der transienten Absorptionsspektroskopie auf beispielhafte Modellsysteme vor. Die Einblicke in die jeweiligen Forschungsgebiete beleuchteten nicht nur einzelne Aspekte, sondern müssen in einem wesentlich größeren Zusammenhang gesehen werden. In großen molekularen Systemen wie biologischen oder künstlichen Architekturen, welche beispielsweise in photosynthetischen Lichtsammelkomplexen und der Photovoltaik Anwendung finden, kann man sich dem grundsätzlichen Verständnis komplexer photoinduzierter Vorgänge und deren Vorhersage durch Untersuchung der zugrundeliegenden Teilschritte – mikroskopisch und auf ultraschnellen Zeitskalen – annähern.
18

Zur spektralen Diffusions- und Energietransferdynamik in halbleitenden einwandigen Kohlenstoffnanoröhren / Spectral diffusion and energy transfer dynamics in semiconducting single wall carbon nanotubes

Schilling, Daniel January 2015 (has links) (PDF)
Einwandige Kohlenstoffnanoröhren weisen aufgrund ihrer besonderen Struktur viele für ein rein kohlenstoffhaltiges Makromolekül ungewöhnliche Eigenschaften auf. Dies macht sie sowohl für die Erforschung grundlegender Phänomene in eindimensionalen Nanostrukturen als auch für potenzielle Anwendungen äußerst interessant. Da alle Atome einer SWNT Oberflächenatome sind, führt dies zu einer besonders ausgeprägten Empfindlichkeit ihrer elektronischen Eigenschaften auf Wechselwirkungen mit der Umgebung. Lokale zeitabhängige Änderungen in diesen Wechselwirkungen führen daher zu Phänomenen wie dem Photolumineszenz-Blinken und spektraler Diffusion. Die Erforschung und Kontrolle der Parameter, die für die Beeinflussung der elektronischen Eigenschaften von SWNTs durch Umgebungseinflüsse entscheidend sind, wird neben der spezifischen Synthese eine maßgebliche Rolle dabei spielen, ob und in welcher Form SWNTs in optoelektronischen Bauteilen zukünftig Anwendung finden. Die vorliegende Arbeit liefert einen Beitrag zum Verständnis dieser Wechselwirkungen, indem die Dynamik von Energietransferprozessen innerhalb von SWNTs und zwischen SWNTs untersucht wurde. Im Rahmen dieser Arbeit wurden homogene und inhomogene Beiträge zur Linienverbreiterung von in einer Matrix eingebetteten SWNTs bestimmt. Dabei wurde erstmals beobachtet, dass die spektrale Diffusion sowohl bei Raumtemperatur als auch bei 17 K auf einer ultraschnellen Zeitskala, d. h. innerhalb von weniger als 1 ps abläuft. Mittels transienter Lochbrennspektroskopie konnte gezeigt werden, dass die homogene Linienbreite von (6,5)-SWNTs mit 3.6 meV nur den geringsten Beitrag zur Absorptionslinienbreite liefert, während die größte Verbreiterung mit mehr als 99 % inhomogen ist. Die inhomogene Linienbreite wurde aus inkohärenten 2D-Spektren, welche durch spektrale Lochbrennexperimente bei Variation der Anregungswellenlänge erhalten werden konnten, zu \(54\pm5\)meV bestimmt. Die Dynamik der spektralen Diffusion wird mit einer Exzitonendiffusion in einer durch lokale Umgebungswechselwirkungen verursachten inhomogenen Energielandschaft entlang der Nanorohrachse erklärt. Durch zeitaufgelöste Lochbrennexperimente unter nichtresonanter Anregung konnte gezeigt werden, dass die Populationsumverteilung innerhalb dieser Energielandschaft für eine energetisch abwärts gerichtete Relaxation ein spontaner Prozess ist. Im umgekehrten Fall ist sie dagegen thermisch aktiviert. Mögliche Einflüsse von Artefakten wurden anhand von Referenzmessungen diskutiert und die Bestimmung der homogenen Linienbreite durch komplementäre CW-Lochbrennexperimente ergänzt. Durch Monte-Carlo-Simulationen konnten erstmals Informationen über die Form der Potenzialenergielandschaft entlang einer SWNT erhalten und die Größenordnung der Plateaubreite mit nahezu konstanter Energie innerhalb der Potenziallandschaft zu 5.8-18.2nm ermittelt werden. Dies gelang durch eine Kalibrierung der Simulationszeit anhand experimenteller transienter Absorptionsspektren. Im Rahmen dieses Modells wurde darüber hinaus die Zeit für einen Sprung zu einem benachbarten Gitterplatz der Energielandschaft zu 0.1 ps bestimmt. Inter- und intraband-Relaxationsprozesse von SWNTs wurden mittels Photolumineszenzspektroskopie untersucht. Die Ergebnisse deuten auf eine temperaturunabhängige Effizienz der internen Konversion und die photostimulierte Generierung von Löschzentren hin. Anhand temperaturabhängiger PL-Messungen, die erstmals bei Anregung des \(S_1\)-Zustands durchgeführt wurden, konnte die Energiedifferenz zwischen dem hellen und dunklen Exziton für (6,5)-SWNTs im Rahmen des Modells eines Dreiniveausystems zu \(\delta = (3.7\pm0.1)\)meV bestimmt werden. Aus der guten Übereinstimmung des temperaturabhängigen Trends der PL-Intensität unter \(S_1\)-Anregung mit in früheren Studien erhaltenen Ergebnissen unter \(S_2\)-Anregung konnte geschlussfolgert werden, dass die Effizienz der internen Konversion nicht ausgeprägt temperaturabhängig ist. Für SWNT-Gelfilme wurde unter \(S_2\)-Anregung eine deutliche Abweichung zur \(S_1\)-Anregung in Form eines Bleichens der Photolumineszenz beobachtet. Dieses Phänomen ist in der Literatur wenig diskutiert und wurde daher in leistungsabhängigen PL-Experimenten weiter untersucht. Dabei wurde für die \(S_2\)- im Vergleich zur \(S_1\)-Anregung eine stärker ausgeprägte sublineare Leistungsabhängigkeit gefunden. Die Abweichung vom linearen Zusammenhang der PL-Intensität mit der Leistung trat hier schon bei um eine Größenordnung geringeren Leistungsdichten auf als in früheren Studien und kann mit einer Exziton-Exziton-Annihilation allein nicht erklärt werden. Möglicherweise ist die Öffnung zusätzlicher Zerfallskanäle durch metastabile Löschzentren für dieses Verhalten verantwortlich. Die PL-Experimente zeigten zudem ein zeitabhängiges irreversibles Bleichen unter \(S_2\)-Anregung, welches bei 30 K stärker ausgeprägt war als bei Raumtemperatur. Dessen Abhängigkeit von der eingestrahlten Photonenzahl lässt auf eine Akkumulation von Löschzentren schließen. Daher wird eine mögliche Redoxreaktion mit Wasser, ausgelöst durch die intrinsische p-Dotierung der SWNTs, als Quelle der Löschzentren diskutiert. Das Verzweigungsverhältnis für die Relaxation nach \(S_2\)-Anregung von SWNTs wurde in Form der relativen Quantenausbeute bestimmt und eine nahezu quantitative interne Konversion des \(S_2\)-Exzitons gefunden. Dieses Ergebnis hat eine wichtige Bedeutung für potenzielle Anwendungen von SWNTs in der Photovoltaik, da die Verluste durch die interband-Relaxation bei einer Anregung des zweiten Subband-Exzitons <3% zu sein scheinen. Die Herausforderung des Experiments wird hier durch die geringe Stokes-Verschiebung von SWNTs verursacht, die eine quantitative Trennung von PL- und Streulicht unmöglich macht. Daher wurde ein Aufbau realisiert, in dem ein großer Teil des Streulichts bereits räumlich entfernt wird und die PL unter \(S_1\)- bzw. \(S_2\)-Anregung quantifizierbar und ohne eine Annahme über Streulicht-Anteile direkt vergleichbar ist. Sowohl für SDS- als auch für Polymer-stabilisierte SWNTs wurde eine relative Quantenausbeute von \(\xi \approxeq 1\) erhalten, was eine nahezu quantitative interne Konversion von \(S_2\)- zu \(S_1\)-Exzitonen innerhalb der PL-Lebensdauer nahelegt. Anregungsenergietransferprozesse zwischen Kohlenstoffnanoröhren in mono- und bidispersen SWNT-Netzwerkfilmen definierter Zusammensetzung wurden mittels zeitaufgelöster Polarisationsanisotropie untersucht. Dabei wurden neben einem ultraschnellen Energietransfer in weniger als 1 ps auch Hinweise auf Beiträge des \(S_2\)-Exzitons an diesem Prozess gefunden. Die Ergebnisse der Experimente mit bidispersen SWNT-Netzwerkfilmen bestätigen den auch in PLE-Spektren beobachteten energetisch abwärts gerichteten Energietransfer von SWNTs mit großer zu solchen mit kleiner Bandlücke und liefern darüber hinaus eine Zeitskala von weniger als 1 ps für diesen Prozess. Die umgekehrte Transferrichtung konnte weder aus dem \(S_1\)- noch aus dem \(S_2\)-Exziton beobachtet werden. Eine Beschleunigung der Anisotropiedynamik bei \(S_2\)- im Vergleich zu S\uu1-Anregung deutet auf einen Beitrag des \(S_2\)-Exzitons am Energietransferprozess in Konkurrenz zur internen Konversion hin. Durch Referenzexperimente mit monodispersen Netzwerkfilmen konnte eine Beteiligung von Energietransferprozessen zwischen SWNTs der gleichen Chiralität auf einer Zeitskala von 1-2ps nachgewiesen werden. Dadurch konnten Beobachtungen von zeitabhängigen Anisotropieänderungen, die einen energetisch aufwärts gerichteten Energietransfer suggerieren, mit einem intra-Spezies-Transfer erklärt werden - Hinweise auf energetisch aufwärts gerichtete EET-Prozesse wurden nicht gefunden. Eine wichtige Erkenntnis aus diesen Experimenten ist die Tatsache, dass die Überlappung von Signalbeiträgen zu einer Verfälschung der Anisotropie und damit zu fehlerhaften Interpretationen führen kann. Darüber hinaus wurde auf den Einfluss der Probenheterogenität und der Alterung von SWNT-Netzwerkfilmen hingewiesen. Diese Untersuchungen legen nahe, dass ein effizienter Exzitonentransfer in SWNT-Netzwerkfilmen auch zwischen den einzelnen Röhrensträngen erfolgen kann und es somit möglich ist, die Effizienz entsprechender Solarzellen zu verbessern. Im letzten Teil der Arbeit wurden erstmals transiente Absorptionsexperimente im Femtosekundenbereich mit SWNTs unter \(Gate-Doping\) durchgeführt. In ersten Experimenten konnte gezeigt werden, dass analog zur chemischen Dotierung von SWNTs die Dynamik des \(S_1\)-Bleichens eines (6,5)-SWNT-Netzwerkfilms nach \(S_2\)-Anregung unter \(Gate-Doping\) eine Beschleunigung durch zusätzliche Zerfallskanäle erfährt. Die elektrochemische Bandlücke wurde für (6,5)-Nanoröhren zu 1.5 eV bestimmt. Eine Verringerung der Photoabsorptionsamplitude mit zunehmendem Potenzial lässt Vermutungen über die Natur dieses in transienten Absorptionsexperimenten beobachteten PA-Merkmals in Form der Absorption einer dotierten SWNT-Spezies zu. Diese Untersuchungen liefern erste Einblicke in die Art und Weise, wie eine elektrochemische Modifizierung von SWNTs die elektronische Bandstruktur und Ladungsträgerdynamik verändert. / Due to their unique structure single wall carbon nanotubes exhibit many exceptional properties compared to other carbon based macromolecules. Their striking properties make SWNTs ideal candidates for the investigation of fundamental phenomena in one-dimensional nanostructures as well as for potential applications. Since all carbon atoms are at the SWNT surface their electronic properties are strongly sensitive towards local environmental interactions. Time-dependent local modifications of these interactions result in phenomena like photoluminescence blinking and spectral diffusion. In addition to specific synthesis, the investigation as well as the proper control of the parameters that affect the environmental influence on the electronic properties of SWNTs will be key factors for the question if and how SWNTs will be used in future optoelectronic devices. This thesis contributes to the understanding of these environmental interactions by means of an investigation of energy transfer dynamics within and between SWNTs. Within the scope of this work, homogeneous and inhomogeneous contributions to the line broadening of matrix embedded SWNTs were determined. It was observed for the first time that spectral diffusion takes place on an ultrafast time scale within less than 1 ps both, at room temperature and at 17 K. Transient hole-burning spectroscopy was used to show, that the homogeneous linewidth of (6,5)-SWNTs is 3.6 meV and thus contributes only a small fraction to the absorption linewidth, whereas inhomogeneous broadening represents the largest contribution with more than 99 %. The inhomogeneous linewidth was deduced from incoherent 2D-spectra which were obtained by excitation wavelength dependent hole-burning spectroscopy. The dynamics of spectral diffusion is consistent with an exciton diffusion in an inhomogeneous energy landscape along the SWNT axis, caused by local environmental interactions. Off-resonant spectral hole-burning experiments revealed that a bathochromic spectral diffusion is a spontaneous process, whereas its hypsochromic equivalent is thermally activated. Control experiments were performed to show possible influences of artifacts on the determination of the homogeneous linewidth. The latter was accompanied by means of complementary CW hole-burning spectroscopy experiments. From Monte-Carlo simulations information about the granularity of the potential energy landscape along the SWNT axis was obtained. The width of plateau regions with nearly constant energy was found to be in the range of 5.8-18.2nm. This was accomplished by calibration of the simulation time on the basis of experimental transient absorption spectra. Within this model the time interval for a population hop to adjacent lattice sites was deduced to be on the order of 0.1 ps. Inter- and intraband relaxation processes of SWNTs were investigated by means of photoluminescence spectroscopy. The results suggest that the efficiency of internal conversion is temperature-independent and that quenching centers are generated by irradiation of SWNTs with light. From the PL temperature dependence, which was carried out under \(S_1\) excitation for the first time, the energy splitting \(\delta\) between the bright and dark exciton states for (6,5)-SWNTs was determined. Within the model of a three level system a value of \(\delta = 3.7\pm0.1\)meV was deduced. The good agreement of the temperature dependence of PL intensity under \(S_1\) excitation with previously published studies under \(S_2\) excitation suggests, that the efficiency of internal conversion exhibits no pronounced temperature dependence. A strong PL bleaching was observed for SWNT gelatin films under \(S_2\) excitation, which has not been found in case of \(S_1\) excitation. Since this discrepancy is only little discussed in literature, power dependent PL experiments were performed for further investigation. For \(S_2\) excitation the sublinear power dependence was found to be more pronounced compared to \(S_1\) excitation. The deviation of PL intensity from a linear trend with increasing excitation power occurred at excitation densities which are one order of magnitude lower as compared to earlier studies and cannot be explained by pure exciton-exciton annihilation. Instead, additional relaxation channels seem to be opened, possibly by the formation of metastable quenching species. The PL experiments also revealed an irreversible time-dependent bleaching under \(S_2\) excitation which was found to be more pronounced at 30 K compared to room temperature. The bleaching dependence on the photon number suggests an accumulation of quenching sites. A possible candidate might be a quenching SWNT species formed by a redox reaction with water in presence of intrinsic p-doping. The branching ratio for relaxation after \(S_2\) excitation was determined as the relative PL quantum yield of the second and first subband exciton for which an almost quantitative internal conversion was deduced. This result is important for potential applications of SWNTs in photovoltaic devices since the loss due to interband relaxation of the \(S_2\) exciton seems to be < 3%. The small Stokes shift in SWNTs hampers the quantitative separation of PL and excitation intensity. In order to avoid contributions from scattered excitation light, a setup was implemented that allows spatial removal of a large fraction of excitation intensity. Furthermore, the PL intensity for both excitation pathways can be quantified at the same time within the same setup and without assumptions about stray light contributions. For SDS- as well as polymer-stabilized SWNT dispersions a relative quantum yield of \(\xi \approxeq 1\) was determined which suggests, that internal conversion of \(S_2\) excitons has a quantum yield of almost unity within the PL lifetime. Excitation energy transfer processes between carbon nanotubes in mono- and bidisperse SWNT network films of predefined composition were investigated by means of time-resolved polarization anisotropy. An ultrafast energy transfer within less than 1 ps as well as contributions of the \(S_2\) exciton to EET were found. The results confirm observations of downhill energy transfer in bidisperse network films from larger to smaller bandgap SWNTs as observed in PLE spectra. The transfer occurs in less than one picosecond. An uphill energy transfer from small to large bandgap tubes has been observed neither for \(S_1\) nor for \(S_2\) excitation. An increase of anisotropy decay rate for \(S_2\) excitation suggests a contribution of energy transfer from the \(S_2\) state as a competing pathway. From reference experiments with monodisperse SWNT network films evidence for a contribution of energy transfer between the same SWNT species within 1-2 ps was provided. This explains consistently the observation of an anisotropy decay after excitation of small band gap tubes in bidisperse networks which could be misinterpreted as an uphill energy transfer. One of the key findings in this work is the fact that anisotropy values might be corrupted due to signal overlap in the transient absorption spectra. Furthermore, it was pointed out that effects of sample heterogeneity and film aging might be important in the context of applications of SWNT thin films under ambient conditions. The results suggest that efficient exciton transfer in SWNT network films is possible between individual SWNT fibers, which can help to improve the efficiency of corresponding photovoltaic devices. In the last part of this work transient absorption experiments on the femtosecond time-scale were performed with SWNTs in the presence of gate doping for the first time. The experiments show that analogous to the case of chemical doping the dynamics of the \(S_1\) bleach recovery of a (6,5)-SWNT network film accelerate in the presence of gate doping. This demonstrates that doping opens an additional relaxation channel. The electrochemical band gap was determined for (6,5)-SWNTs from transient absorption spectroscopy to be 1.50 eV. The observation of a decrease in photoabsorption amplitude with increasing potential leads to speculations about the nature of the PA as an absorption of a doped SWNT species. The investigation provides first insight into the way how electrochemical modification of SWNTs alters their electronic band structure and charge carrier dynamics.
19

The Study of Carrier Dynamics in Multi-Stacked InAs/GaAs Quantum Dots

Wang, Fu-Yun 08 August 2012 (has links)
This paper is using the Time-resolved Pump-Probe spectroscopy to study the quantum dots samples. The samples are InAs/GaAs multi-stacked quantum dots that with different spacer layer (10~30 nm). The stain between the InAs quantum dots and GaAs spacer layer that makes the valence band to split into heavy-hole and light-hole energy band. From the photoluminescence (PL), we see the heavy-hole and light-hole energy band are blue shift in InAs quantum dot, when the GaAs spacer layer decrease. We use the optic property of Pump-Probe spectroscopy of the change in the refraction index £Gn to investigate the shift of heavy-hole energy band, when the GaAs spacer layer decrease. We see the heavy-hole energy band of GaAs is blue shift when the GaAs spacer layer decrease. When we change the pump energy, the TRPP spectroscopy signal will change from positive to negative. This is the band-filling effect changes the refraction index £Gn , when the energy close to the GaAs heavy hole energy state. When the energy is above the GaAs heavy hole energy state, the TRPP signal is positive. When the excited carrier density decrease and the delay time increase, TRPP signal will change the positive value to negative value. These are band-gap renormalization and free-carrier absorption effect change the refraction index £Gn, when the carrier density decrease.
20

Design and Optimize a Two Color Fourier Domain Pump Probe Optical Coherence Tomography System

Jacob, Desmond 16 January 2010 (has links)
Molecular imaging using fluorescence spectroscopy-based techniques is generally inefficient due to the low quantum yield of most naturally occurring biomolecules. Current fluorescence imaging techniques tag these biomolecules chemically or through genetic manipulation, increasing the complexity of the system. A technique capable of imaging these biomolecules without modifying the chromophore and/or its environment could provide vital biometric parameters and unique insights into various biological processes at a molecular level. Pump probe spectroscopy has been used extensively to study the molecular properties of poorly fluorescing biomolecules, because it utilizes the known absorption spectrum of these chromophores. Optical Coherence Tomography (OCT) is an optical imaging modality that harnesses the power of low coherence interferometry to measure the 3-D spatially resolved reflectivity of a tissue sample. We plan to develop a new molecular imaging modality that combines these techniques to provide 3-D, highresolution molecular images of various important biomolecules. The system uses a Fourier domain OCT setup with a modified sample arm that combines the "pump" and "probe" beams. The pump beam drives the molecules from the ground state to excited state and the probe interrogates the population change due to the pump and is detected interferometrically. The pump and the probe beam wavelengths are optimized to maximize absorption at the pump wavelength and maximize the penetration depth at the probe wavelength. The pump-probe delay can be varied to measure the rate at which the excited state repopulates the ground state, i.e., the ground state recovery time. The ground state recovery time varies for different chromophores and can potentially be used to identify different biomolecules. The system was designed and optimized to increase the SNR of the PPOCT signals. It was tested by imaging hemoglobin and melanin samples and yielded encouraging results. Potential applications of imaging hemoglobin using this technique include the mapping of tissue microvasculature and measuring blood-oxygen saturation levels. These applications could be used to identify hypoxic areas in tissue. Melanin imaging can provide means of demarcation of melanoma in various organs such as skin, eye and intestines.

Page generated in 0.0393 seconds