• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 13
  • 9
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 33
  • 24
  • 20
  • 18
  • 18
  • 14
  • 14
  • 12
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Punching Shear Retrofit Method Using Shear Bolts for Reinforced Concrete Slabs under Seismic Loading

Bu, Wensheng January 2008 (has links)
Reinforced concrete slab-column structures are widely used because of their practicality. However, this type of structures can be subject to punching-shear failure in the slab-column connections. Without shear reinforcement, the slab-column connection can undergo brittle punching failure, especially when the structure is subject to lateral loading in seismic zones. The shear bolts are a new type of transverse reinforcement developed for retrofit of existing structures against punching. This research focuses on how the shear bolts can improve the punching-shear capacity and ductility of the existing slab-column connections under vertical service and lateral seismic loads. A set of nine full-scale reinforced concrete slab-column connection specimens were tested under vertical service and cyclic loads. The vertical (gravity) load for each specimen was kept at a constant value throughout the testing. The cyclic lateral drift with increasing intensity was applied to the columns. The specimens were different in number of bolts, concrete strength, number of openings, and level of gravity punching load. Strains in flexural rebars in the slabs, crack widths, lateral loads, and displacements were obtained. The peak lateral load (moment) and its corresponding drift ratio, connection stiffness, crack width, and ductility were compared among different specimens. The testing results show that shear bolts can increase lateral peak load resisting capacity, lateral drift capacity at peak load, and ductility of the slab-column connections. Shear bolts also change the failure mode of the slab-column connections and increase the energy dissipation capacity. The thesis includes also research on the development of guidelines for shear bolt design for concrete slab retrofitting, including the punching shear design method of concrete slab (with shear bolts), dimensions of bolts, spacing, and influence of bolt layout patterns. Suggestions are given for construction of retrofitting method using shear bolts. Recommendations are also presented for future research.
12

Structural Performance of a Full-Depth Precast Concrete Bridge Deck System

Mander, Thomas 2009 August 1900 (has links)
Throughout the United States accelerated bridge construction is becoming increasingly popular to meet growing transportation demands while keeping construction time and costs to a minimum. This research focuses on eliminating the need to form full-depth concrete bridge deck overhangs, accelerating the construction of concrete bridge decks, by using full-depth precast prestressed concrete deck panels. Full-depth precast overhang panels in combination with cast-in-place (CIP) reinforced concrete are experimentally and analytically investigated to assess the structural performance. Experimental loaddeformation behavior for factored AASHTO LRFD design load limits is examined followed by the collapse capacity of the panel-to-panel seam that exists in the system. Adequate strength and stiffness of the proposed full-depth panels deem the design safe for implementation for the Rock Creek Bridge in Fort Worth, Texas. New failure theories are derived for interior and exterior bridge deck spans as present code-based predictions provide poor estimates of the ultimate capacity. A compound shear-flexure failure occurs at interior bays between the CIP topping and stay-in-place (SIP) panel. Overhang failure loads are characterized as a mixed failure of flexure on the loaded panel and shear at the panel-to-panel seam. Based on these results design recommendations are presented to optimize the reinforcing steel layout used in concrete bridge decks.
13

Punching shear behaviour of FRP-reinforced concrete interior slab-column connections

Sayed, Ahmed 26 August 2015 (has links)
Flat slab-column connections are common elements in reinforced concrete (RC) structures such as parking garages. In cold weather regions, these structures are exposed to de-icing salts and aggressive environments. Using fiber reinforced polymer (FRP) bars instead of steel in such structures will overcome the corrosion problems associated with steel reinforcement. However, the available literature shows few studies to evaluate the behaviour of FRP-RC interior slab-column connections tested mainly under concentric loads, which seldom occurs in a real building. The main objectives of this research are to deal with this gap by investigating the behaviour of full-scale glass (G) FRP-RC interior slab-column connections subjected to eccentric load and to provide design recommendations for such type of connections. This study consisted of two phases, experimental and analytical. The experimental phase included the construction and testing of ten full-scale interior slab-column connections. The parameters investigated in the experimental phase were flexural reinforcement ratio, concrete compressive strength, type of the reinforcement, moment-to-shear ratio and the spacing between the shear stud reinforcement. Test results revealed that increasing the GFRP reinforcement ratio or the concrete strength increased the connection capacity. Moreover, compared to the control steel-RC specimen, the GFRP-RC connection with similar reinforcement rigidity showed comparable capacity and deflection at failure. Also, increasing the moment-to-shear ratio resulted in a reduction in the vertical load capacity, while using the shear stud reinforcement enhanced the strength up to 23%. In the analytical phase, a 3-D finite element model (FEM) was constructed using specialized software. The constructed FEM was able to predict the experimental results within a reasonable accuracy. The verified FEM was then used to conduct a parametric study to evaluate the effects of perimeter-to-depth ratio, column aspect ratio, slab thickness and a wide range of flexural reinforcement ratio. The numerical results showed that increasing the reinforcement ratio increased the connection capacity. In addition, increasing the perimeter-to-depth ratio and slab thickness reduced the punching shear stresses at failure, while, the effect of the column rectangularity diminished for a ratio greater than three. Moreover, the results showed prominent agreement with the experimental results from literature. / October 2015
14

Punção em lajes de concreto armado com furo e transferência de momento: comparação de normas. / Punching shear in reinforced concrete stabs with hole and moment transfer: comparison of standards.

Carolina Ribeiro da Silva 06 December 2017 (has links)
O crescente uso de lajes sem vigas (lisa com ou sem capitel) como solução estrutural de edificações, justificado por questões econômicas e construtivas, têm destacado a importância do estudo desses elementos estruturais. Já as desvantagens desse sistema estrutural estão associadas às altas tensões geradas na região próxima dos pilares, originando o fenômeno de punção. As normas atuais especificam uma seção íntegra resistente para dimensionamento à punção, entretanto, devido principalmente à passagem de instalações hidráulicas e elétricas através dos pavimentos, é necessária a execução de furações, em alguns casos muito próximas ao contorno dos pilares, o que implica diretamente na redução dessa seção e da resistência das lajes. Portanto, são necessários modelos de cálculo específicos para isso. A NBR 6118 tem critérios para esse problema, mas são antigos e precisam ser modernizados. Assim, comparando os dados experimentais de algumas pesquisas com as cargas últimas estimadas para normas vigentes (fib MC2010:2013, EC2:2004, ACI-318:2014 e NBR 6118:2014), este trabalho teve como objetivo identificar limitações das normas estudadas e verificar a eventual possibilidade de melhorias. Com base nos resultados observados foi proposta uma alteração para a NBR 6118: 2014 no cálculo da punção para lajes lisas com furo(s) na região do pilar, de modo que seja considerado no dimensionamento o momento gerado pela excentricidade do perímetro crítico devido à presença de furo(s) na laje. / The increasing use of flat slabs (slabs without beams with or without drop panel) as a structural solution of buildings, justified by economic and constructive issues, has highlighted the importance of the study of these structural elements. The disadvantages of this structural system are associated with high stresses generated in the region near of the columns, causing the punching shear phenomenon. The current standards specify a resistant section for punching shear design, however, due mainly to the passage of hydraulic and electric installations through the floors, it is necessary to execute holes, in some cases very close to the boundaries of the columns, which reduces this section and the slab strength. Therefore, it is necessary to specify calculation models for that. The NBR 6118 has criteria for this problem, nonetheless it is old and needs to be modernized. Comparing experimental data from some researches, with the estimated ultimate loads for current standards (fib MC2010: 2013, EC2: 2004, ACI-318: 2014 and NBR 6118: 2014), this work had as objective to identify limitations of the standards studied and verify possible improvements. Based on the observed results, it was proposed a modification for NBR 6118: 2014 in the design of the punching shear of flat slabs with hole(s) near of the column, considering the moment caused by the eccentricity of the critical perimeter due to the presence of hole(s) in the slab.
15

Análise experimental da punção em lajes de concreto armado e protendido / Experimental punching shear analysis of reinforced and prestressed concrete slabs

José Luiz Pinheiro Melges 29 March 2001 (has links)
As lajes lisas podem oferecer diversas vantagens quando comparadas ao sistema de lajes, vigas e pilares, sendo, em muitos casos, mais econômicas. O uso da protensão pode oferecer outras vantagens, tais como um melhor controle da fissuração e dos deslocamentos transversais da laje. Como a punção é um dos pontos fracos das lajes lisas protendidas, face à grande esbeltez destas lajes, apresentam-se resultados experimentais de ligações laje-pilar interno, com carregamento concêntrico, com e sem armadura de punção (conectores tipo-pino), com e sem protensão por pós-tração (cabos não aderentes). Os principais aspectos analisados foram as influências da armadura de punção e da protensão na resistência da ligação laje-pilar. Fez-se também uma análise envolvendo a previsão da resistência da ligação, dada por algumas normas e códigos. Observa-se que, de um modo aproximado, a armadura de punção eleva significativamente a resistência do modelo à punção, seja ele de concreto armado ou protendido. Observa-se ainda que, embora diminuindo a taxa de armadura dos modelos de concreto armado, para que se introduzissem as cordoalhas de protensão, os valores experimentais obtidos mostram que a presença da protensão aumentou a resistência da ligação. De um modo geral, a melhor norma que reflete o comportamento da ligação lajepilar é a Revisão da NB-1 (2000). Com relação aos modelos protendidos, o ACI poderia ter tido um bom desempenho, caso não houvesse uma restrição tão rígida com relação ao uso de armaduras de punção / The use of flat plates may offer some economical and aesthetic benefits when compared with other structural systems. The use of post-tensioned slabs may offer other advantages, as a better crack and deflection control and a thinner slab for the same span and load conditions. This work presents some experimental results and conclusions about the punching shear failure, as it is a critical problem for flat plate structures, post-tensioned or not. The main aspects analyzed are the influence of the shear reinforcement (studs) and of the post-tensioning with unbonded tendons on a slab – internal column connection strength. A comparison between experimental results and those given by some standards is presented. This comparison aims to verify if the codes accurately predict the punching shear strength of the connection. It can be noted that, in an specific comparison, the studs enhance the punching shear strength of the slab-column connection. In spite of the use of less flexural reinforcement in the post-tensioned models, the punching shear strength of the connection had a higher value when compared with the reinforced ones. This fact is due to the presence of the prestressed strands
16

Analysis of repaired/strengthened R.C. structures using composite materials : punching shear

Abdullah, Ahmad Mahmoud January 2011 (has links)
Fibre reinforced plastics (FRP) have been used widely in civil engineering in order to improve the structural response (deformation and stress). Most of the current codes for the strengthening of RC structures do not provide enough provision for the design of the column-slab connections strengthened with externally bonded reinforcement (EBR) due to the lack of research covering this area. This study is to investigate, both experimentally and analytically, the effectiveness of bonding pre-stressed carbon fibre plates to the tension surface of concrete column-slab connections in both the serviceability and ultimate limit state. The experimental programme comprises five full-scale specimens that are designed and fabricated to simulate an interior column-slab connection. The prestressing technique, application procedure and prestressing device are described in detail in this study. Different prestressing forces are applied to the FRP plates bonded to the concrete substrate. The structural response of the strengthened specimens are compared with a reference specimen in terms of punching shear strength, deflection profile, strain, crack opening displacement and failure modes. Furthermore, a finite element model using ABAQUS is built to obtain a further insight into the punching behaviour of the test slabs. Both experimental and numerical results are compared, and a parametric study on the effect of the FRP-concrete interface on the structural integrity is conducted. Results are also compared with Eurocode 2 and ACI for the prediction of the punching strength. It was found that bonding of prestressed FRP plates to the tensile face of the concrete slabs improved the serviceability, but was not able to enhance the ultimate behaviour as much as the non-prestressed FRP plates. The development of the critical diagonal crack (CDC) was the main reason for diminishing the ultimate strength of the strengthened slabs.
17

Flexural, Shear, and Punching Shear Capacity of Three 48-Year-Old Prestressed Lightweight Concrete Double-Tee Bridge Girders

Pettigrew, Christopher S. 01 May 2014 (has links)
The Icy Springs Bridge in Coalville, Utah carries 2nd South Street over the Weber River west of Interstate 80. The bridge is owned by Coalville City and was originally constructed in 1965 as a single-span 51-foot long bridge using prestressed concrete double-tee girders. In the fall of 2013 the original bridge was replaced with a new 80-foot long single span bridge using prestressed concrete decked bulb-tee girders. The original girders were salvaged and transported to the Systems, Materials, and Structural Health Lab (SMASH Lab) where a series of tests were performed to determine the total losses in the prestressing of the strands, the flexural and shear capacities of the girders, and the punching shear capacity of the reinforced concrete deck. The results of these tests were compared to the values calculated using methods outlined in the 2012 American Association of State Highway and Transportation Officials Load and Resistance Factor Design (AASHTO LRFD) Bridge Design Specifications, the current bridge design code used by most departments of transportation, and a finite element model using the computer program ANSYS. For the shear and punching shear test results, the AASHTO LRFD Bridge Design Specifications was conservative and was able to predict the type of failure that occurred. However, the tested flexural results were below the calculated flexural capacities using the AASHTO LRFD Bridge Design Specifications. A finite element model was created and calibrated to the test results for the various loading and support conditions. The actual tested material properties were compared to the material properties used in the finite element analyses to determine the difference between the actual girders and the theoretical models. Funding for this project was provided by the Utah Transportation Center.
18

Punching Shear of Flat Slabs

Lyčka, Lukáš January 2019 (has links)
The use of flat slabs in constructions due to its many functional and economic advantages is wide-spread. Behavior of flat slabs in shear and flexure is a fairly complex problem. Therefore, the punching shear failure belongs to one of the most critical aspects in the design of concrete buildings. Over the last decades several buildings have collapsed due to the failure of the punching shear strength, resulting in loss of lives and financial damages. These disasters revealed gaps in the current (or former) design codes and recommendations. As a part of theoretical framework of the dissertation a method for predicting the punching shear strength of flat slabs was developed. Several experiments on scaled down slabs were conducted in order to verify the proposed method and for optimization of its parameters. Proposed method in development predicts the punching shear for slabs without shear reinforcement according to the EC2 and replaces the area of the shear crack with a system of struts and ties.
19

Punching shear of concrete flat slabs reinforced with fibre reinforced polymer bars

Al Ajami, Abdulhamid January 2018 (has links)
Fibre reinforcement polymers (FRP) are non-corrodible materials used instead of conventional steel and have been approved to be an effective way to overcome corrosion problems. FRP, in most cases, can have a higher tensile strength, but a lower tensile modulus of elasticity compared to that of conventional steel bars. This study aimed to examine flat slab specimens reinforced with glass fibre reinforced polymer (GFRP) and steel bar materials for punching shear behaviour. Six full-scale two-way slab specimens were constructed and tested under concentric load up to failure. One of the main objectives is to study the effect of reinforcement spacing with the same reinforcement ratio on the punching shear strength. In addition, two other parameters were considered, namely, slab depth, and compressive strength of concrete. The punching shear provisions of two code of practises CSA S806 (Canadian Standards 2012) and JSCE (JSCE et al. 1997) reasonably predicted the load capacity of GFRP reinforced concrete flat slab, whereas, ACI 440 (ACI Committee 440 2015) showed very conservative load capacity prediction. On the other hand, a dynamic explicit solver in nonlinear finite element (FE) modelling is used to analyse a connection of column to concrete flat slabs reinforced with GFRP bars in terms of ultimate punching load. All FE modelling was performed in 3D with the appropriate adoption of element size and mesh. The numerical and experimental results were compared in order to evaluate the developed FE, aiming to predict the behaviour of punching shear in the concrete flat slab. In addition, a parametric study was created to explore the behaviour of GFRP reinforced concrete flat slab with three parameters, namely, concrete strength, shear load perimeter to effective depth ratio, and, flexural reinforcement ratio. It was concluded that the developed models could accurately capture the behaviour of GFRP reinforced concrete flat slabs subjected to a concentrated load. Artificial Neural Networks (ANN) is used in this research to predict punching shear strength, and the results were shown to match more closely with the experimental results. A parametric study was performed to investigate the effects of five parameters on punching shear capacity of GFRP reinforced concrete flat slab. The parametric investigation revealed that the effective depth has the most substantial impact on the load carrying capacity of the punching shear followed by reinforcement ratio, column perimeter, the compressive strength of the concrete, and, the elastic modulus of the reinforcement.
20

Punching shear behaviour of GFRP-RC slab-column edge connections with high strength concrete and shear reinforcement

Mostafa, Ahmed 17 November 2016 (has links)
In this thesis the experimental results of seven full-scale glass fiber-reinforced polymer (GFRP) reinforced concrete (RC) slab-column edge connections are presented. The dimensions of the slabs were 2,800×1,550×200 mm with a square column measuring 300×300×2,200 mm. The test connections were divided into two series. Series I included three connections investigating the effect of flexural reinforcement ratio (0.90, 1.35 and 1.80%) when high strength concrete (HSC) is used, while Series II included four connections investigating the effect of GFRP shear reinforcement type and pattern on normal strength concrete (NSC) connections. Test results showed that increasing the reinforcement ratio increased the punching capacity and the post-cracking stiffness of the HSC connections. Furthermore, the use of headed studs and corrugated bars increased the punching capacity and the deformability of the NSC connections. Test results were compared to the predictions of the Canadian and American design provisions for FRP-RC structures. / February 2017

Page generated in 0.0924 seconds