• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 517
  • 146
  • 146
  • 146
  • 146
  • 146
  • 145
  • 104
  • 48
  • 33
  • 26
  • 22
  • 12
  • 12
  • 10
  • Tagged with
  • 2417
  • 1668
  • 1153
  • 579
  • 147
  • 97
  • 89
  • 81
  • 68
  • 64
  • 60
  • 58
  • 58
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1571

Algebraic characterization of multivariable dynamics

Ramsey, Christopher January 2009 (has links)
Let X be a locally compact Hausdorff space along with n proper continuous maps σ = (σ1 , · · · , σn ). Then the pair (X, σ) is called a dynamical system. To each system one can associate a universal operator algebra called the tensor algebra A(X, σ). The central question in this theory is whether these algebras characterize dynamical systems up to some form of natural conjugacy. In the n = 1 case, when there is only one self-map, we will show how this question has been completely determined. For n ≥ 2, isomorphism of two tensor algebras implies that the two dynamical systems are piecewise conjugate. The converse was only established for n = 2 and 3. We introduce a new construction of the unitary group U (n) that allows us to prove the algebraic characterization question in n = 2, 3 and 4 as well as translating this conjecture into a conjecture purely about the structure of the unitary group.
1572

Operator Theoretic Methods in Nevanlinna-Pick Interpolation

Hamilton, Ryan 26 March 2009 (has links)
This Master's thesis will develops a modern approach to complex interpolation problems studied by Carath\'odory, Nevanlinna, Pick, and Schur in the early $20^{th}$ century. The fundamental problem to solve is as follows: given complex numbers $z_1,z_2,...,z_N$ of modulus at most $1$ and $w_1,w_2,...,w_N$ additional complex numbers, what is a necessary and sufficiency condition for the existence of an analytic function $f: \mathbb{D} \rightarrow \mathbb$ satisfying $f(z_i) = w_i$ for $1 \leq i \leq N$ and $\vert f(z) \vert \leq 1$ for each $z \in \mathbb{D}$? The key idea is to realize bounded, analytic functions (the algebra $H^\infty$) as the \emph of the Hardy class of analytic functions, and apply dilation theory to this algebra. This operator theoretic approach may then be applied to a wider class of interpolation problems, as well as their matrix-valued equivalents. This also yields a fundamental distance formula for $H^\infty$, which provides motivation for the study of completely isometric representations of certain quotient algebras. Our attention is then turned to a related interpolation problem. Here we require the interpolating function $f$ to satisfy the additional property $f'(0) = 0$. When $z_i =0$ for some $i$, we arrive at a special case of a problem class studied previously. However, when $0$ is not in the interpolating set, a significant degree of complexity is inherited. The dilation theoretic approach employed previously is not effective in this case. A more function theoretic viewpoint is required, with the proof of the main interpolation theorem following from a factorization lemma for the Hardy class of analytic functions. We then apply the theory of completely isometric maps to show that matrix interpolation fails when one imposes this constraint.
1573

On the Representation Theory of Semisimple Lie Groups

Al-Faisal, Faisal January 2010 (has links)
This thesis is an expository account of three central theorems in the representation theory of semisimple Lie groups, namely the theorems of Borel-Weil-Bott, Casselman-Osborne and Kostant. The first of these realizes all the irreducible holomorphic representations of a complex semisimple Lie group G in the cohomology of certain sheaves of equivariant line bundles over the flag variety of G. The latter two theorems describe the Lie algebra cohomology of a maximal nilpotent subalgebra of Lie(G) with coefficients in an irreducible Lie(G)-module. Applications to geometry and representation theory are given. Also included is a brief overview of Schmid's far-reaching generalization of the Borel--Weil--Bott theorem to the setting of unitary representations of real semisimple Lie groups on (possibly infinite-dimensional) Hilbert spaces.
1574

Harmonic analysis of Rajchman algebras

Ghandehari, Mahya January 2010 (has links)
Abstract harmonic analysis is mainly concerned with the study of locally compact groups, their unitary representations, and the function spaces associated with them. The Fourier and Fourier-Stieltjes algebras are two of the most important function spaces associated with a locally compact group. The Rajchman algebra associated with a locally compact group is defined to be the set of all elements of the Fourier-Stieltjes algebra which vanish at infinity. This is a closed, complemented ideal in the Fourier-Stieltjes algebra that contains the Fourier algebra. In the Abelian case, the Rajchman algebras can be identified with the algebra of Rajchman measures on the dual group. Such measures have been widely studied in the classical harmonic analysis. In contrast, for non-commutative locally compact groups little is known about these interesting algebras. In this thesis, we investigate certain Banach algebra properties of Rajchman algebras associated with locally compact groups. In particular, we study various amenability properties of Rajchman algebras, and observe their diverse characteristics for different classes of locally compact groups. We prove that amenability of the Rajchman algebra of a group is equivalent to the group being compact and almost Abelian, a property that is shared by the Fourier-Stieltjes algebra. In contrast, we also present examples of large classes of locally compact groups, such as non-compact Abelian groups and infinite solvable groups, for which Rajchman algebras are not even operator weakly amenable. Moreover, we establish various extension theorems that allow us to generalize the previous result to all non-compact connected SIN-groups. Finally, we investigate the spectral behavior of Rajchman algebras associated with Abelian locally compact groups, and construct point derivations at certain elements of their spectrum using Varopoulos’ decompositions for Rajchman algebras. Having constructed similar decompositions, we obtain analytic discs around certain idempotent characters of Rajchman algebras. These results, and others that we obtain, illustrate the inherent distinction between the Rajchman algebra and the Fourier algebra of many locally compact groups.
1575

On the Modular Theory of von Neumann Algebras

Boey, Edward January 2010 (has links)
The purpose of this thesis is to provide an exposition of the \textit{modular theory} of von Neumann algebras. The motivation of the theory is to classify and describe von Neumann algebras which do not admit a trace, and in particular, type III factors. We replace traces with weights, and for a von Neumann algebra $\mathcal{M}$ which admits a weight $\phi$, we show the existence of an automorphic action $\sigma^\phi:\mathbb{R}\rightarrow\text{Aut}(\mathcal{M})$. After showing the existence of these actions we can discuss the crossed product construction, which will then allow us to study the structure of the algebra.
1576

Mean Curvature Flow in Euclidean spaces, Lagrangian Mean Curvature Flow, and Conormal Bundles

Leung, Chun Ho January 1900 (has links)
I will present the mean curvature flow in Euclidean spaces and the Lagrangian mean curvature flow. We will first study the mean curvature evolution of submanifolds in Euclidean spaces, with an emphasis on the case of hypersurfaces. Along the way we will demonstrate the basic techniques in the study of geometric flows in general (for example, various maximum principles and the treatment of singularities). After that we will move on to the study of Lagrangian mean curvature flows. We will make the relevant definitions and prove the fundamental result that the Lagrangian condition is preserved along the mean curvature flow in Kähler-Einstein manifolds, which started the extensive, and still ongoing, research on Lagrangian mean curvature flows. We will also define special Lagrangian submanifolds as calibrated submanifolds in Calabi-Yau manifolds. Finally, we will study the mean curvature flow of conormal bundles as submanifolds of C^n. Using some tools developed recently, we will show that if a surface has strictly negative curvatures, then away from the zero section, the Lagrangian mean curvature flow starting from a conormal bundle does not develop Type I singularities.
1577

A survey of Roth's Theorem on progressions of length three

Nishizawa, Yui 06 December 2011 (has links)
For any finite set B and a subset A⊆B, we define the density of A in B to be the value α=|A|/|B|. Roth's famous theorem, proven in 1953, states that there is a constant C>0, such that if A⊆{1,...,N} for a positive integer N and A has density α in {1,...,N} with α>C/loglog N, then A contains a non-trivial arithmetic progression of length three (3AP). The proof of this relies on the following dichotomy: either 1) A looks like a random set and the number of 3APs in A is close to the probabilistic expected value, or 2) A is more structured and consequently, there is a progression P of about length α√N on which A∩P has α(1+cα) for some c>0. If 1) occurs, then we are done. If 2) occurs, then we identify P with {1,...,|P|} and repeat the above argument, whereby the density increases at each iteration of the dichotomy. Due to the density increase in case 2), an argument of this type is called a density increment argument. The density increment is obtained by studying the Fourier transforms of the characterstic function of A and extracting a structure out of A. Improving the lower bound for α is still an active area of research and all improvements so far employ a density increment. Two of the most recent results are α>C(loglog N/log N)^{1/2} by Bourgain in 1999 and α>C(loglog N)^5/log N by Sanders in 2010. This thesis is a survey of progresses in Roth's theorem, with a focus on these last two results. Attention was given to unifying the language in which the results are discussed and simplifying the presentation.
1578

Representations of Operator Algebras

Fuller, Adam Hanley 08 May 2012 (has links)
The following thesis is divided into two main chapters. In Chapter 2 we study isometric representations of product systems of correspondences over the semigroup 𝐍ᵏ which are minimal dilations of finite dimensional, fully coisometric representations. We show the existence of a unique minimal cyclic coinvariant subspace for all such representations. The compression of the representation to this subspace is shown to be a complete unitary invariant. For a certain class of graph algebras the nonself-adjoint WOT-closed algebra generated by these representations is shown to contain the projection onto the minimal cyclic coinvariant subspace. This class includes free semigroup algebras. This result extends to a class of higher-rank graph algebras which includes higher-rank graphs with a single vertex. In chapter 3 we move onto semicrossed product algebras. Let 𝒮 be the semigroup 𝒮=Σ𝒮ᵢ, where 𝒮ᵢ is a countable subsemigroup of the additive semigroup 𝐑₊ containing 0. We consider representations of 𝒮 as contractions {Tᵣ }ᵣ on a Hilbert space with the Nica-covariance property: Tᵣ*Tᵤ=TᵤTᵣ* whenever t^s=0. We show that all such representations have a unique minimal isometric Nica-covariant dilation. This result is used to help analyse the nonself-adjoint semicrossed product algebras formed from Nica-covariant representations of the action of 𝒮 on an operator algebra 𝒜 by completely contractive endomorphisms. We conclude by calculating the C*-envelope of the isometric nonself-adjoint semicrossed product algebra (in the sense of Kakariadis and Katsoulis).
1579

Measuring optical absorption coefficient of pure water in UV using the integrating cavity absorption meter.

Wang, Ling 10 October 2008 (has links)
The integrating cavity absorption meter (ICAM) has been used successfully to measure the low absorption coefficient of pure water. The ICAM produces an effective total path length of several meters or even longer, although the physical size of the instrument is only several centimeters. The long effective total path length ensures a high sensitivity that enables the ICAM to measure liquid mediums with low absorption. Compared to the conventional transmission type of instruments that were used to measure the same medium with the same path length, the ICAM eliminates the effect of scattering by introducing isotropic illumination in the medium, and consequently measures the true absorption coefficient of the medium in stead of the attenuation coefficient. The original ICAM was constructed with Spectralon and used in the wavelength range from 380 nm to 700 nm. Later studies showed that Spectralon is not suitable for measurements in the UV region because of its relatively lower reflectivity in this region and, even worse, the continuously decaying reflectivity under the exposure to UV radiation. Thus, we have developed a new way to construct the ICAM utilizing the material fumed silica. The resulting ICAM has a high sensitivity even in the UV region and doesn't have the deterioration problem. The measurement results from the new ICAM are in good agreement with the existing results. The absorption coefficients of pure water at wavelengths between 250 nm and 400 nm are presented here.
1580

On the Representation Theory of Semisimple Lie Groups

Al-Faisal, Faisal January 2010 (has links)
This thesis is an expository account of three central theorems in the representation theory of semisimple Lie groups, namely the theorems of Borel-Weil-Bott, Casselman-Osborne and Kostant. The first of these realizes all the irreducible holomorphic representations of a complex semisimple Lie group G in the cohomology of certain sheaves of equivariant line bundles over the flag variety of G. The latter two theorems describe the Lie algebra cohomology of a maximal nilpotent subalgebra of Lie(G) with coefficients in an irreducible Lie(G)-module. Applications to geometry and representation theory are given. Also included is a brief overview of Schmid's far-reaching generalization of the Borel--Weil--Bott theorem to the setting of unitary representations of real semisimple Lie groups on (possibly infinite-dimensional) Hilbert spaces.

Page generated in 0.0341 seconds