Spelling suggestions: "subject:"purely cosymplectic automorphism"" "subject:"purely polysymplectic automorphism""
1 |
Invariant Lattices of Several Elliptic K3 SurfacesFullwood, Joshua Joseph 29 July 2021 (has links)
This work is concerned with computing the invariant lattices of purely non-symplectic automorphisms of special elliptic K3 surfaces. Brandhorst gave a collection of K3 surfaces admitting purely non-symplectic automorphisms that are uniquely determined up to isomorphism by certain invariants. For many of these surfaces, the automorphism is also unique or the automorphism group of the surface is finite and with a nice isomorphism class. Understanding the invariant lattices of these automorphisms and surfaces is interesting because of these uniqueness properties and because it is possible to give explicit generators for the Picard and invariant lattices. We use the methods given by Comparin, Priddis and Sarti to describe the Picard lattice in terms of certain special curves from the elliptic fibration of the surface. We use symmetries of the Picard lattice and fixed-point theory to compute the invariant lattices explicitly. This is done for all of Brandhorst's elliptic K3 surfaces having trivial Mordell-Weil group.
|
2 |
Unique K3 Surfaces with Purely Non-Symplectic Automorphism: Insights from Weighted Projective SpaceUnique K3 Surfaces with Purely Non-Symplectic Automorphism:\\Insights from Weighted Projective SpaceMelville, Elizabeth 22 April 2024 (has links) (PDF)
K3 surfaces have garnered attention across various fields, from optics and dynamics to high energy physics, making them a subject of extensive study for many decades. Recent work by mathematicians, including Brandhorst [1], has focused on non-symplectic automorphisms, aiming to categorize K3 surfaces that admit such automorphisms. Brandhorst made a list of unique K3 surfaces with purely non-symplectic automorphisms and established specific criteria for a K3 surface to be isomorphic to one on his list. This thesis aims to provide an alternative representation of select K3 surfaces from Brandhorst's list. While Brandhorst predominantly characterizes these surfaces as elliptic K3 surfaces, we offer a description of these surfaces as hypersurfaces in weighted projective space. Our approach involves verifying the criteria established by Brandhorst, thereby establishing an isomorphism between the surfaces in question. Through this study, we contribute to the understanding of K3 surfaces and their automorphisms while also demonstrating the correspondence between different spaces and methodologies for analyzing K3 surfaces. This work lays the groundwork for further investigations into K3 surfaces with purely non-symplectic automorphisms, paving the way for deeper insights into their structural properties and geometric intricacies.
|
Page generated in 0.0904 seconds