• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 33
  • 9
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 110
  • 21
  • 17
  • 14
  • 14
  • 12
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Effects of Purine Nucleoside Phosphorylase (PNP) Deficiency on Thymocyte Development

Papinazath, Taniya 27 July 2010 (has links)
PNP is a crucial enzyme in purine metabolism, and its inherited defects result in severe T-lineage immune deficiency in humans. I hypothesized that PNP deficiency disrupts the development of late CD4-CD8- double negative (DN) thymocytes and induces mitochondrial-mediated apoptosis of CD4+CD8+ double positive (DP) thymocytes. By using PNP-deficient (PNP-/-) mice as well as an OP9-DL1 co-culture system simulating PNP-deficient conditions, I demonstrated that PNP deficiency interferes with the maturation of DN thymocytes at the transition from DN3 to DN4 stage. Although PNP deficiency does not affect the generation or proliferation of DP thymocytes, PNP-/- DP thymocytes were observed to undergo apoptosis at a higher rate. My results suggest that apoptosis is induced through a mitochondrial mediated pathway. Additionally, re-introduction of PNP into PNP-/- thymocytes protected the cells from the toxic effects of deoxyguanosine by preventing the formation of deoxyguanosine triphosphate, indicating that the toxic metabolite in PNP deficiency is deoxyguanosine.
12

The effect of L-methionine of the uptake and utilization of guanine-8-C¹⁴ by Saccharomyces cerevisiae

Smith, Bonnie Lee, 1940- January 1964 (has links)
No description available.
13

Factors influencing muscle purine nucleotide metabolism

Stathis, Christos George. January 2006 (has links)
Thesis (Ph. D.)--Victoria University (Melbourne, Vic.), 2006. / Includes bibliographical references.
14

Kinetic studies of 6-halopurine nucleosides in SNAR reactions; 6-(azolyl, alkylthio and fluoro)-purine nucleosides as substrates for Suzuki reactions /

Liu, Jiangqiong, January 2007 (has links) (PDF)
Thesis (Ph. D.)--Brigham Young University. Dept. of Chemistry and Biochemistry, 2007. / Includes bibliographical references.
15

Enzymes of Purine Salvage Pathway in \kur{Trypanosoma brucei} and the Trypanocidal Action of Acyclic Nucleoside Phosphonates

KOTRBOVÁ, Zuzana January 2014 (has links)
This study aims to functionally characterize two enzymes, HGPRT and XPRT, of an essential purine salvage pathway in the infection stage of Trypanosoma brucei. Localization, in vivo function and in vitro activity of these enzymes were characterized. Effect of acyclic nucleoside phosphonates, putative inhibitors of HGXPRT, on the viability of bloodstream form of T. brucei was evaluated.
16

PRESENCE OF INOSINE MONOPHOSPHATE DURING CELL MEDIATED IMMUNITY IN GUINEA PIGS (IMP).

VALENTINE, MARY ANN. January 1982 (has links)
The presence of the purine nucleotide inosine monophosphate (IMP) was studied in direct relationship to the development and expression of cell mediated immunity in guinea pigs using DNCB or Histoplasma capsulatum as sensitizing antigens. The IMP content of T-cell enriched lymphocytic lysates was measured by isocratic high pressure liquid chromatography (HPLC). Intracellular IMP levels of cells from homologously skin tested sensitized animals were significantly increased one day after skin testing when compared to the concentrations found in these cells during the period following sensitization. Concurrent with these observations were the findings that the absolute lymphocyte counts and histoplasmin stimulated in vitro blastogenic responses increased following sensitization while the PHA-induced proliferative response decreased slightly. One day after skin testing, when IMP levels had increased, there was a slight decrease in lymphocyte numbers and a marked decrease in the PHA response. Cells collected at this time and cultured in vitro with histoplasmin responded with increased levels of protein production and increased IMP levels. These data suggest (1) the proliferative response of cells from sensitized animals appears to be associated with lower levels of intracellular IMP, and (2) sensitized cells stimulated in vivo with antigen appear to have characteristically higher IMP concentrations.
17

An investigation into the reactivity of nitrosobenzenes as carcinogenic metabolites of nitrobenzenes and anilines

Lynch, Peter Neil January 1997 (has links)
No description available.
18

Factors involved in the regulation of purine degradation genes in Sinorhizobium meliloti

Walsh, Keith Thomas January 2010 (has links)
Genes involved in purine degradation in Sinorhizobium meliloti to date remain largely uncharacterized. Analysis of the bdhAxdhA2xdhB2 operon established a link between the degradation of purines and the carbon storage compound poly-3-hydroxybutyrate (PHB). This operon contains genes (xdhA2xdhB2) that encode xanthine oxidase / xanthine dehy- drogenase, an enzyme involved in the conversion of hypoxanthine and xanthine to uric acid. The bdhA gene located in the same operon encodes 3-hydroxybutyrate dehydrogenase, an enzyme responsible for catalyzing the second step in PHB degradation. This linkage be- tween the degradation of PHB (a carbon source) and purines (a nitrogen source) suggests a possible means by which Sinorhizobium meliloti obtains sufficient carbon and nitrogen to allow it to successfully colonize a host plant. Purine degradation genes in S. meliloti have also been studied by the phenotypic char- acterization of Tn5 mutants unable to utilize hypoxanthine. Mutations resulting in these phenotypes were found in three different genes, SMc03849 (ccmC), a cytochrome c bio- genesis mutant, SMb20684, a gene coding for a hypothetical protein possibly involved in the utilization of glyoxylate and SMb2192, a gene coding for a membrane spanning protein possibly involved in purine transport. In this study we further characterized these mutants by examining their ability to establish a symbiosis with Medicago sativa (alfalfa) and to fix atmospheric nitrogen. It was demonstrated that in the case of all the mutant strains there was a competitive deficiency in terms of gaining entry to root nodules relative to the wild-type strain. It was shown that this deficiency occurred even in strains capable of fixing atmospheric nitrogen suggesting that the inability to utilize hypoxanthine impairs the ability of S. meliloti to colonize the host plant. Of all of these genes studied thus far only one (SMb21292) is located in the region of the genome containing the greatest number of genes potentially involved in purine degra- dation. In this study we used transcriptional fusions to confirm the activation of genes in this genomic region when grown in media containing purines as carbon and nitrogen sources. These genes include xdhA1, SMb21284 and guaD1. Genes from the genome re- gion containing the mixed function operon including xdhA2 and guaD2 were also studied. In addition we were able to demonstrate the requirement of xdhC in producing a func- tional oxidase / xanthine dehydrogenase as well as the ability to grow on hypoxanthine or xanthine as a carbon and nitrogen source. This work was also able to demonstrate the critical nature of the LysR transcription regulator (SMb21291) in purine degradation in S. meliloti. Mutating this gene resulted in an inability to grow on hypoxanthine or xanthine as well as an alteration in levels of xanthine oxidase / xanthine dehydrogenase activity. By transducing the gene fusions into the LysR mutant background it was demonstrated that the protein coded for by SMb21291 acts to regulate or influence the expression of genes involved in the purine degradation cycle such as SMb21284 and xdhA1. In addition we were able to characterize strains with mutations in purine degradation genes in terms of their growth on different purines.
19

Factors involved in the regulation of purine degradation genes in Sinorhizobium meliloti

Walsh, Keith Thomas January 2010 (has links)
Genes involved in purine degradation in Sinorhizobium meliloti to date remain largely uncharacterized. Analysis of the bdhAxdhA2xdhB2 operon established a link between the degradation of purines and the carbon storage compound poly-3-hydroxybutyrate (PHB). This operon contains genes (xdhA2xdhB2) that encode xanthine oxidase / xanthine dehy- drogenase, an enzyme involved in the conversion of hypoxanthine and xanthine to uric acid. The bdhA gene located in the same operon encodes 3-hydroxybutyrate dehydrogenase, an enzyme responsible for catalyzing the second step in PHB degradation. This linkage be- tween the degradation of PHB (a carbon source) and purines (a nitrogen source) suggests a possible means by which Sinorhizobium meliloti obtains sufficient carbon and nitrogen to allow it to successfully colonize a host plant. Purine degradation genes in S. meliloti have also been studied by the phenotypic char- acterization of Tn5 mutants unable to utilize hypoxanthine. Mutations resulting in these phenotypes were found in three different genes, SMc03849 (ccmC), a cytochrome c bio- genesis mutant, SMb20684, a gene coding for a hypothetical protein possibly involved in the utilization of glyoxylate and SMb2192, a gene coding for a membrane spanning protein possibly involved in purine transport. In this study we further characterized these mutants by examining their ability to establish a symbiosis with Medicago sativa (alfalfa) and to fix atmospheric nitrogen. It was demonstrated that in the case of all the mutant strains there was a competitive deficiency in terms of gaining entry to root nodules relative to the wild-type strain. It was shown that this deficiency occurred even in strains capable of fixing atmospheric nitrogen suggesting that the inability to utilize hypoxanthine impairs the ability of S. meliloti to colonize the host plant. Of all of these genes studied thus far only one (SMb21292) is located in the region of the genome containing the greatest number of genes potentially involved in purine degra- dation. In this study we used transcriptional fusions to confirm the activation of genes in this genomic region when grown in media containing purines as carbon and nitrogen sources. These genes include xdhA1, SMb21284 and guaD1. Genes from the genome re- gion containing the mixed function operon including xdhA2 and guaD2 were also studied. In addition we were able to demonstrate the requirement of xdhC in producing a func- tional oxidase / xanthine dehydrogenase as well as the ability to grow on hypoxanthine or xanthine as a carbon and nitrogen source. This work was also able to demonstrate the critical nature of the LysR transcription regulator (SMb21291) in purine degradation in S. meliloti. Mutating this gene resulted in an inability to grow on hypoxanthine or xanthine as well as an alteration in levels of xanthine oxidase / xanthine dehydrogenase activity. By transducing the gene fusions into the LysR mutant background it was demonstrated that the protein coded for by SMb21291 acts to regulate or influence the expression of genes involved in the purine degradation cycle such as SMb21284 and xdhA1. In addition we were able to characterize strains with mutations in purine degradation genes in terms of their growth on different purines.
20

Effects of certain purine inhibitors in normal and neoplastic tissues

Moore, Erin Colleen, January 1958 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1958. / Typescript. Abstracted in Dissertation abstracts, v. 19 (1958) no. 5, p. 947. Consists mainly of articles by E.C. Moore and G.A. LePage. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.

Page generated in 0.0447 seconds