• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MAKING SURE HUNGRY PLANTS GET FED: THE DUAL-TARGETED PURPLE ACID PHOSPHATASE ISOZYME AtPAP26 IS ESSENTIAL FOR EFFICIENT ACCLIMATION OF ARABIDOPSIS THALIANA TO NUTRITIONAL PHOSPHATE DEPRIVATION

Hurley, Brenden A 18 November 2009 (has links)
Acid phosphatases (APases; E.C. 3.1.3.2) catalyze the hydrolysis of phosphate (Pi) from Pi monoesters and anhydrides within the acidic pH range. Induction of intracellular and secreted purple acid phosphatases (PAPs) is a widespread plant response to nutritional Pi-deficiency. The probable function of intracellular APases is to recycle Pi from expendable intracellular organophosphate pools, whereas secreted APases likely scavenge Pi from the organically bound Pi that is prevalent in most soils. Although the catalytic function and regulation of plant PAPs have been described, their physiological function in plants has not been fully established. Recent biochemical and proteomic studies indicated that AtPAP26 is the predominant intracellular (vacuolar) and a major secreted purple APase isozyme upregulated by Pi-starved (-Pi) Arabidopsis thaliana. The in planta function of AtPAP26 was assessed by molecular, biochemical, and phenotypic characterization of a homozygous Salk T-DNA insertion mutant. Loss of AtPAP26 expression resulted in the elimination of AtPAP26 transcripts and 55-kDa immunoreactive AtPAP26 polypeptides, correlated with a 9- and 5-fold decrease in extractable shoot and root APase activity, respectively, as well as a 40% reduction in secreted APase activity of –Pi seedlings. The results corroborate previous findings implying that AtPAP26 is: (i) the principal contributor to Pi starvation inducible APase activity in Arabidopsis, and (ii) controlled post-transcriptionally mainly at the level of protein accumulation. Total shoot free Pi level was about 40% lower in –Pi atpap26 mutants relative to wild-type controls, but unaffected under Pi-sufficient conditions. Moreover, shoot, root, inflorescence, and silique development of the atpap26 mutant was impaired during Pi deprivation, but unaffected under Pi-replete conditions, or during nitrogen or potassium-limited growth, or oxidative stress. The results suggest that the hydrolysis of Pi from organic-phosphate esters by AtPAP26 makes an important contribution to Pi-recycling and scavenging in –Pi Arabidopsis. / Thesis (Master, Biology) -- Queen's University, 2009-09-01 09:46:39.302
2

The influence of nutritional phosphate deprivation on the secreted proteome of Arabidopsis thaliana

TRAN, Hue 29 April 2010 (has links)
This thesis examines the influence of nutritional phosphate (Pi) deprivation on extracellular proteins secreted by the model plant Arabidopsis thaliana. Initial studies compared the secretome of Pi-sufficient (+Pi) versus Pi-deficient (-Pi) Arabidopsis cell cultures by 2-dimensional gel electrophoresis. Mass spectrometry identified 18 different secreted proteins that were upregulated by at least 2-fold by –Pi Arabidopsis. They were predicted to function in Pi scavenging, cell wall and ROS metabolism, proteolysis, and pathogen responses. The relationship between mRNA levels and relative amounts of selected secretome proteins was assessed. The results indicate that transcriptional control is but one of many factors contributing to Arabidopsis Pi starvation responses and highlight the importance of parallel biochemical and proteomic studies of –Pi plants. Three purple acid phosphatase (APase) isoforms were fully purified from the culture media of –Pi Arabidopsis cells and identified as AtPAP12 (At2g27190) and two AtPAP26 (At5g34850) glycoforms. As each purple APase exhibited broad substrate specificities and pH-activity profiles, it is hypothesized that their combined activities facilitate Pi scavenging from soil-localized organophosphates during nutritional Pi deprivation. AtPAP26 is dual-targeted during Pi stress since an earlier report demonstrated that it is also the principal intracellular (vacuolar) APase upregulated by -Pi Arabidopsis. The results indicate that differential glycosylation influences AtPAP26’s substrate specificity and subcellular targeting. An atpap26 T-DNA insertional mutant lacking AtPAP26 transcripts and immunoreactive AtPAP26 polypeptides exhibited: (i) 9- and 5-fold lower shoot and root APase activity, respectively, which did not change in response to Pi starvation, (ii) a 40% reduction in secreted APase activity during Pi deprivation, (iii) 35 and 50% reductions in free and total Pi concentration, respectively, in shoots of –Pi plants, and (iv) impaired shoot and root development when subjected to Pi deficiency. By contrast, no deleterious influence of AtPAP26 loss of function was apparent in +Pi plants. The results establish a firm role for AtPAP26 in the acclimation of Arabidopsis to Pi deficiency. The identification and functional characterization of secreted proteins upregulated by –Pi Arabidopsis is relevant to applied efforts to engineer Pi-efficient transgenic plants, needed to minimize the input of expensive, unsustainable, and polluting Pi fertilizers in crop production. / Thesis (Ph.D, Biology) -- Queen's University, 2010-04-28 17:20:46.892
3

Biochemical and Molecular characterization of AtPAP25, a novel cell wall-localized purple acid phosphatase isozyme upregulated by phosphate-starved Arabidopsis thaliana

Del Vecchio, HERNAN 10 September 2012 (has links)
Upregulation of intracellular and secreted acid phosphatases (APases) is a universal response of orthophosphate-starved (-Pi) plants. APases hydrolize Pi from a broad spectrum of phosphomonoesters at an acidic pH. Plant APases belong to a relatively large multigene family whose specific functions in Pi metabolism are poorly understood. This study focuses on the identification and characterization of cell wall (CW) localized purple acid APases (PAPs) upregulated by -Pi Arabidopsis thaliana. Three glycosylated PAP isozymes secreted into the CW of -Pi Arabidopsis suspension cells were purified and identified by peptide mass fingerprinting using mass spectrometry (MALDI-TOF MS) and N-terminal microsequencing as AtPAP12 (At2g27190; subunit size 60-kDa), AtPAP25 (At4g36350; subunit size 55-kDa) and AtPAP26 (At5g34850; subunit size 55-kDa). Both AtPAP12 and AtPAP26 were previously shown to be upregulated and secreted by –Pi Arabidopsis to scavenge Pi from extracellular organic-P. However, the novel AtPAP25 has never been suggested to be involved in the plant Pi-starvation response. Biochemical characterization of AtPAP25 revealed a monomeric 55 kDa protein. Similar to other PAPs it was purple-in-solution and insensitive to tartrate. Glycoprofiling via LC MS/MS revealed highly complex NXS/T glycosylation motifs at Asn172, Asn367 and Asn424. I hypothesize that these motifs play a role in AtPAP25 targeting and function. Kinetic characterization revealed a broad pH optimum centered at 5.6 and inhibition of activity by several common APase inhibitors. AtPAP25 exhibited broad substrate selectivity, low Vmax, and a Km (phosphoenolpyruvate) value of 0.52 mM. Immunoblot and semi-quantitative RT-PCR transcript analysis indicated that AtPAP25 is exclusively synthesized under –Pi conditions. Deduced amino acid sequences were compared using multiple sequence alignment and phylogenetic analysis. Growth of atpap25 T-DNA insertion mutant knockout seedlings was completely arrested when transferred to a soluble Pi deficient organic-P containing soil mix, pointing to a potential regulatory function of AtPAP25 during nutritional Pi stress. Overall, this research is helping to shed light on the functional importance of specific PAP isozymes in facilitating plant acclimation to nutritional Pi deficiency. This is important because there is an urgent need to engineer Pi-efficient transgenic crops to minimize the huge input of expensive, non-renewable, and polluting Pi fertilizers in agriculture. / Thesis (Master, Biology) -- Queen's University, 2012-09-10 08:28:21.631
4

Rôle des phosphatases acides dans le métabolisme et le stockage des sucres dans la vacuole chez Arabidopsis thaliana : approches in vitro et in silico

Monier, Antoine 13 December 2012 (has links)
Les « Purple Acid Phosphatases » (PAPs) sont des phosphatases acides présentes dans le règne végétal et animal. Elles sont caractérisées à la fois par la présence de sept acides aminés conservés impliqués dans la structure d’un centre bimétallique et par leur couleur rose/violète lorsqu’elles se trouvent en solution. Chez les plantes, certaines PAPs présenteraient à la fois une activité phosphatase sur des métabolites (PEP, G6P…) et sur des phospho-peptides (glycosidases…), d’une part, et une activité peroxydase, de l’autre. Ces PAPs pourraient donc, non seulement être impliquées dans le métabolisme carboné, mais aussi dans la détoxication des espèces réactives de l’oxygène. On compte à ce jour 29 gènes codant pour des PAPs chez Arabidopsis thaliana , dont un certain nombre est induit par la carence en Pi et par le stress oxydatif ou la senescence. Parmi eux, le gène de l’AtPAP26 (At5g34850) présente de très fortes homologies de séquence avec des orthologues présents chez d’autres plantes. La protéine AtPAP26, qui présente in vitro une activité phosphatase sur le PEP et le G6P et une activité peroxydase, est sécrétée même si de nombreux indices laissent penser qu’elle pourrait également être localisée dans la vacuole.Notre objectif est d’étudier le rôle d’AtPAP26 dans le métabolisme et le stockage des sucres dans la vacuole. Notre hypothèse de départ est que la protéine AtPAP26 pourrait intervenir via son activité phosphatase dans un cycle de substrat vacuolaire impliquant le glucose-6-phosphate et le glucose. Nous avons montré que chez le mutant pap26, l’activité glucose-6-phosphatase, mesurée in vitro et in organello, chute de manière importante. Parallèlement, chez le mutant gpt2, le transport tonoplastique des hexoses phosphates diminue de façon significative. Des expériences de marquages isotopiques sur du tissu racinaire en culture ont montré qu’une part importante du glucose et du fructose ne provient pas de l’hydrolyse du saccharose et que AtPAP26 est en partie responsable de cette synthèse. Enfin, par une approche in-silico, nous avons modélisé le métabolisme des sucres dans un système compartimenté impliquant la vacuole et ses transporteurs. La confrontation du modèle avec deux jeux de données expérimentales (concentrations à l’état stationnaire et cinétiques de marquage) a permis de confirmer l’existence d’une activité hydrolytique sur les hexoses phosphates vacuolaires. / «Purple Acid Phosphatases» (PAPs) are acid phosphatases found both in animal and vegetal kingdoms. They are characterized by the presence of seven conserved amino acids involved in a di-metal center and by their pink/purple color in solution. In plants, some PAPs exhibit an acid phosphatase activity on various phospho-esters and on phospho-peptides. An alcalin peroxidase activity has been demonstrated in vitro. Therefore, PAPs could be implicated both in the carbon metabolism and in the scavenging of reactive oxygen species. To date, 29 different PAP-encoding genes were identified in the Arabidopsis thaliana genome. Some of them are induced by phosphate deprivation, oxidative burst or senescence. The gene encoding the protein AtPAP26 (At5g34850) exhibits a high sequence similarity with orthologous from other plants. The AtPAP26 protein, showing both a phosphatase activity on PEP, G6P and F6P, and a peroxidase activity, is one of the most abundant root-secreted acid phosphatases but also appears to be localized in the vacuole. Our aim is to study the implication of AtPAP26 in the metabolism and storage of sugars in the vacuole. Our first hypothesis is that AtPAP26, via its phosphatase activity, could be involved in a glucose / glucose-6-phosphate cycle localized in the vacuole. We showed that the glucose-6-phosphatase activity in the pap26 mutant is highly affected both in vitro and in organello compared to the wild type. At the same time, the hexose phosphate transport capacity of the vacuole is highly affected in the gpt2 mutant compared to the wild-type. Moreover, isotopic labeling experiments performed on cultured root tissues have shown that a significant part of the intracellular glucose and fructose pool does not originate from sucrose and that AtPAP26 is, at least in part, responsible for this synthesis. Finally, we build a kinetic model of sugar metabolism in a compartmented system which has been validated by using two independent experimental data sets (steady state concentrations and kinetics of labeling of soluble sugars). This in silico modeling approach confirmed the involvement of a hexose phosphatase activity localized in the vacuole.
5

Etudes de systèmes organométalliques et biologiques par des méthodes hybrides mécanique quantique/mécanique moléculaire

Retegan, Marius 27 February 2009 (has links) (PDF)
Ces dernières années, les méthodes hybrides QM/MM combinant la mécanique quantique (QM) et la mécanique moléculaire (MM) se sont revélées des méthodes de choix pour l'étude de systèmes chimiques et biochimiques contenant plus d'une centaine d'atomes. Nous avons mis en évidence les apports et difficultés liés à leur utilisation à travers des systèmes variés: modélisation de ligands phosphines, réactivité d'une protéine de type acide phosphatase pourpre, modélisation de l'interaction protéine-ligand.
6

Structure-function relationships in metal dependent enzymes

Eleanor Wai Wai Leung Unknown Date (has links)
Metalloproteins account for at least half of all known proteins. Metal ions often facilitate chemical that are energetically and/or kinetically challenging. Metal ion-dependent proteins are responsible for a myriad of essential biological functions, including respiration, biosynthesis of essential amino acids, nitrogen fixation, oxygen transport, photosynthesis and metabolisms (e.g. glycolysis and citric acid cycle). Not surprisingly, a growing number of disorders (e.g. various cancers, phenylketonuria, Wilson’s disease) are associated with mutations in metalloenzymes. A general introduction of the importance of metals in biology is presented in chapter 1. This thesis is aimed at obtaining a greater understanding of the structure and function of three metalloenzymes, ketol acid reductoisomerase (KARI), purple acid phosphatase (PAP) and metallo β lactamase (MβL). Chapter 2 examines the structure and dynamics of plant KARI. KARI is an enzyme in the branched-chain amino acid (BCAA) biosynthesis pathway. KARI is a binuclear Mg2+ enzyme that catalyses the conversion of 2-acetolactate (AL) into (2R)-2,3-dihydroxy-3-isovalerate or 2-aceto-2-hydroxybutyrate into (2R, 3R)-2,3-dihydroxy-3-methylvalerate in the presence of NADPH. To date, the only reported structures for a plant KARI are those of the spinach enzyme-Mn2+-(phospho) ADP ribose-(2R,3R)-2,3-dihydroxy-3-methylvalerate complex and the spinach KARI-Mg2+-NADPH-N-hydroxy-N-isopropyloxamate complex, where N-hydroxy-N-isopropyloxamate (IpOHA) is a predicted transition-state analog. These studies demonstrate that the enzyme is consisted of two domains, N- domain and C- domain, with the active site at the interface of these domains. In this chapter, the structures of the rice KARI-Mg2+ and rice KARI-Mg2+-NADPH complexes were determined to 1.55 and 2.8 Å resolutions, respectively. Comparisons of all the available plant KARI structures have revealed several major differences. Firstly, the N-domain is rotated up to 15o relative to the C-domain, expanding the active site by up to 4 Å. Secondly, an α-helix in the C-domain that includes residues V510-T519 and forms part of the active site moves by ~ 3.9 Å upon binding of NADPH. Thirdly, the 15 C-terminal amino acid residues in the rice KARI-Mg2+ complex are disordered. In the rice KARI-Mg2+-NADPH complex and spinach KARI structures, many of the 15 residues bind to NADPH and the N-domain and cover the active site. Fourthly, the location of the metal ions within the active site can vary by up to 2.7 Å. The new structures have thus, led to the proposal of an induced-fit mechanism. In this proposed induced-fit mechanism, (i) substrate enters the active site, (ii) active site is closed during catalysis, and (iii) the opening of active site facilitates product release. PAP is also a binuclear metalloenzyme and is capable of utilizing a heterovalent active site to hydrolyse a broad range of phosphomonoester substrates. Chapter 3 examines the catalytic mechanism of PAP based on several new crystal structures. The red kidney bean PAP structure in complex in sulphate was determined to 2.4 Å. This sulphate-bound structure provides insight into the pre-catalytic phase of its reaction cycle. This stucture demonstrates the significance of an extensive hydrogen-bonding network in the second coordination in initial substrate binding and orientation prior to hydrolysis. Most importantly, the two metal ions, Fe3+ and Zn2+, are five-coordinate in this structure, with only one nucleophilic μ-hydroxide present in the metal-bridging position. In combination with kinetic, crystallographic and spectroscopic data, all PAP structures form the proposal of a comprehensive eight-step model for the catalytic mechanism of purple acid phosphatases in general. To date, no reliable method for producing recombinant PAP at levels suitable for structural biology have been reported. Natural sources are the only way so far to obtaining PAP in a large quantity. Attempts to produce active and recombinant PAP from Mycobacterium marinum using bacterial are found in chapter 4. In brief, in combination with Nus fusion tag, Rosetta (DE3) strain and lower temperature (e.g. 25oC), expression of soluble and mycobacterial PAP becomes possible. However, this soluble protein is non-functional and thus, switching into other expression system (e.g.algal sytem) is the only approach to obtain soluble and functional protein. In algal expression system, human PAP was attempted. Preliminary results indicate that some PAP activity was observed when expressed in algal system. Chapter 5 focuses on the investigation of metallo β lactamase (MβL) from Klebsiella pneumoniae (Kp-MβL). This enzyme requires one or two Zn2+ ions for catalysis. Kinetic properties of Kp-MβL for the hydrolysis of various β-lactam substrates (e.g. benzyl-penicillin, cefoxitin, imipenem and meropenem) were investigated and the role of the metal ions in catalysis was also examined. Kinetic data demonstrate that Klebsiella pneumoniae MβL can degrade a broad spectrum of β-lactam antibiotics, with a high preference for cephems and carbapenems. Kinetic data from pH dependence studies has revealed that catalysis of benzyl-penicillin and meropenem is preferred at acidic pH. The kcat vs pH profile demonstrates that catalysis is enhanced by protonation, thus it is likely that the relevant group is responsible for the donation of a proton to the product or leaving group. In this case, a doubly Lewis activated, bridging hydroxide molecule has been speculated. A single protonation event (pKa ~7) is also observed in kcat/Km vs pH profile. Since benzyl-penicillin does not have an acidic moiety in this pH range, this event is likely to be associated with the free enzyme. His 79 and 139 have been speculated to enhance substrate binding. In contrast, catalysis of both cefoxitin and imipenem is favoured at alkaline pH, leading to the proposal that a terminally bound water is likely to form a nucleophile. A bell-shaped pH profile for kcat/Km is observed for cefoxitin and imipenem substrates. pKa of ~ 9-9.5 is likely to be associated with Lys161, which enhances substrate binding. In Chapter 6, a novel MβL from Serratia proteamaculans (Spr-MβL) is investigated. This chapter includes expression, purification and preliminary characterization of this MβL using steady-state kinetics. Expression of this enzyme in Rosetta (DE3) plysS E. coli strain yields only a small amount of soluble enzyme (1 mg/ 6 L culture). To improve the amount of soluble protein, Spr-MβL was subjected to several rounds of in vitro evolution. About two-fold gain in solubility was achieved by this method along with a five-fold increase in β-lactamase activity. Further rounds of directed evolution are now planned. The kinetic behaviour for Spr-MβL-catalysed the hydrolysis of three β-lactam substrates, penicillin, cefoxitin and imipenem were also studied. Kinetic data suggest that a water molecule bridging the two Zn2+ ions is the likely nucleophile in the reaction with penicillin while the reaction-initiating nucleophile is likely to be a terminally bound hydroxide in the reaction with cephalothin and imipenem (Chapter 6). In summary, this project has led to a better understanding of the structures of KARI and PAP prior to catalysis. This project has also aided in the understanding of catalytic mechanism of MβLs and the role the metal ions play. The knowledge gained will facilitate the development of new chemotherapeutics and herbicides.
7

Phosphorus nutrition of poplar

Kavka, Mareike Jana 15 December 2016 (has links)
No description available.

Page generated in 0.1166 seconds