• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Pricing Put Options with Multilevel Monte Carlo Simulation

Schöön, Jonathan January 2021 (has links)
Monte Carlo path simulations are common in mathematical and computational finance as a way of estimating the expected values of a quantity such as a European put option, which is functional to the solution of a stochastic differential equation (SDE). The computational complexity of the standard Monte Carlo (MC) method grows quite large quickly, so in this thesis we focus on the Multilevel Monte Carlo (MLMC) method by Giles, which uses multigrid ideas to reduce the computational complexity. We use a Euler-Maruyama time discretisation for the approximation of the SDE and investigate how the convergence rate of the MLMC method improves the computational times and cost in comparison with the standard MC method. We perform a numerical analysis on the computational times and costs in order to achieve the desired accuracy and present our findings on the performance of the MLMC method on a European put option compared to the standard MC method.
12

A mathematical model for managing equity-linked pensions.

Julie, Elmerie January 2007 (has links)
<p>Pension fund companies manage and invest large amounts of money on behalf of their members. In return for their contributions, members expect a benefit at termination of their contract. Due to the volatile nature of returns that pension funds attain, pension companies started attaching a minimum guaranteed amount to member&rsquo / s benefits. In this mini-thesis we look at the pioneering work of Brennan and Schwartz [10] for pricing these minimum guarantees. The model they developed prices these minimum guarantees using option pricing theory. We also look at the model proposed by Deelstra et al. which prices minimum guarantees in a stochastic financial setting. We conclude this mini-thesis with new contributions where we look at simple alternative ways of pricing minimum guarantees. We conclude this mini-thesis with an approach, related to the work of Brennan and Schwartz [10], whereby the member&rsquo / s benefit is maximised for a given minimum guaranteed amount, which comprises of multi-period guarantees. We formulate a method to find the optimal stream of these multi-period guarantees.</p>
13

A mathematical model for managing equity-linked pensions.

Julie, Elmerie January 2007 (has links)
<p>Pension fund companies manage and invest large amounts of money on behalf of their members. In return for their contributions, members expect a benefit at termination of their contract. Due to the volatile nature of returns that pension funds attain, pension companies started attaching a minimum guaranteed amount to member&rsquo / s benefits. In this mini-thesis we look at the pioneering work of Brennan and Schwartz [10] for pricing these minimum guarantees. The model they developed prices these minimum guarantees using option pricing theory. We also look at the model proposed by Deelstra et al. which prices minimum guarantees in a stochastic financial setting. We conclude this mini-thesis with new contributions where we look at simple alternative ways of pricing minimum guarantees. We conclude this mini-thesis with an approach, related to the work of Brennan and Schwartz [10], whereby the member&rsquo / s benefit is maximised for a given minimum guaranteed amount, which comprises of multi-period guarantees. We formulate a method to find the optimal stream of these multi-period guarantees.</p>
14

A mathematical model for managing equity-linked pensions

Julie, Elmerie January 2007 (has links)
Magister Scientiae - MSc / Pension fund companies manage and invest large amounts of money on behalf of their members. In return for their contributions, members expect a benefit at termination of their contract. Due to the volatile nature of returns that pension funds attain, pension companies started attaching a minimum guaranteed amount to member&rsquo;s benefits. In this mini-thesis we look at the pioneering work of Brennan and Schwartz [10] for pricing these minimum guarantees. The model they developed prices these minimum guarantees using option pricing theory. We also look at the model proposed by Deelstra et al. which prices minimum guarantees in a stochastic financial setting. We conclude this mini-thesis with new contributions where we look at simple alternative ways of pricing minimum guarantees. We conclude this mini-thesis with an approach, related to the work of Brennan and Schwartz [10], whereby the member&rsquo;s benefit is maximised for a given minimum guaranteed amount, which comprises of multi-period guarantees. We formulate a method to find the optimal stream of these multi-period guarantees. / South Africa
15

Calibration, Optimality and Financial Mathematics

Lu, Bing January 2013 (has links)
This thesis consists of a summary and five papers, dealing with financial applications of optimal stopping, optimal control and volatility. In Paper I, we present a method to recover a time-independent piecewise constant volatility from a finite set of perpetual American put option prices. In Paper II, we study the optimal liquidation problem under the assumption that the asset price follows a geometric Brownian motion with unknown drift, which takes one of two given values. The optimal strategy is to liquidate the first time the asset price falls below a monotonically increasing, continuous time-dependent boundary. In Paper III, we investigate the optimal liquidation problem under the assumption that the asset price follows a jump-diffusion with unknown intensity, which takes one of two given values. The best liquidation strategy is to sell the asset the first time the jump process falls below or goes above a monotone time-dependent boundary. Paper IV treats the optimal dividend problem in a model allowing for positive jumps of the underlying firm value. The optimal dividend strategy is of barrier type, i.e. to pay out all surplus above a certain level as dividends, and then pay nothing as long as the firm value is below this level. Finally, in Paper V it is shown that a necessary and sufficient condition for the explosion of implied volatility near expiry in exponential Lévy models is the existence of jumps towards the strike price in the underlying process.
16

En undersökning av kvantiloptioners egenskaper

Lundberg, Robin January 2017 (has links)
Optioner säljs och köps idag flitigt av många olika anledningar. En av dessa kan vara spekulation kring framtida händelser för aktiepriser där optioner har fördelar jämfört med aktier i form av en hävstångseffekt. En annan anledning för optionshandel är för att hedga (säkra) risker vilket ställer krav på att innehavet av optionen ska kompensera den negativa effekt som riskerna bidrar till. Med andra ord, om det finns en risk för ett negativt framtida scenario som man inte vill riskera att utsätta sig för så kan optioner vara rätt verktyg att använda sig av.   Risker finns idag överallt, i olika former, vilket har bidragit till att efterfrågan av optioner har ökat enormt de senaste årtiondena. Dock kan risker vara både komplexa och varierande vilket har lett till att mer komplexa optioner har utvecklats för att mätta den efterfrågan som utvecklats på marknaden. Dessa, mer komplexa optioner, kallas exotiska optioner och de skiljer sig från de vanliga europeiska och amerikanska köp- och säljoptionerna. Däribland hittar vi bland annat lookback-optioner i form av bland annat köpoptioner på maximum och kvantiloptioner vilka är två av de huvudsakliga optionerna som diskuteras i uppsatsen.   Det har länge varit känt hur man prissätter europeiska köp- och säljoptioner via Black-Scholes-Mertons modell men desto fler komplexa optioner som tillkommer på marknaden desto mer komplicerade prissättningsmodeller utvecklas. Till skillnad från europeiska köp- och säljoptioner vars utdelning beror på aktiepriset på lösendagen så är lookback-optioner beroende av aktieprisets rörelse under hela kontraktstiden. Detta medför att prissättningen av dessa beror av fler parametrar än i Black-Scholes-Mertons modell, bland annat ockupationstiden för den stokastiska process som beskriver aktiepriset, vilket bidrar till andra prissättningsmodeller.   Uppsatsen har som syfte att redogöra för modellen som används vid prissättningen av kvantiloptioner samt presentera hur deras egenskaper förhåller sig till andra typer av lookback-optioners egenskaper. Det presenteras i rapporten att kvantiloptioner liknar vissa typer av lookback-optioner, mer bestämt köpoptioner på maximum, och att kvantiloptioners egenskaper faktiskt konvergerar mot köpoptioner på maximums egenskaper då kvantilen närmar sig 1. Utifrån detta resonemang så kan det finnas fördelar i att använda kvantiloptioner snarare än köpoptioner på maximum vilket investerare bör ta i hänsyn när, och om, kvantiloptioner introduceras på marknaden. / Options are today used by investors for multiple reasons. One of these are speculation about future market movements, here ownership of options is advantageous over usual ownership of shares in the underlying stock in terms of a leverage effect. Furthermore, investors use options to hedge different kinds of risks that they are exposed to, this demands that the option compensates the possible negative effect that the risk brings to the table. In other words, if there is a risk of a future negative scenario which the investor is risk averse to, then owning specific options which neutralize this risk could be the perfect tool to use.   Risks are today seen all over the market in different shapes which have created a great demand for options over the last decades. However, since risks can be both complex and range over multiple business areas, investors have demanded more complex options which can neutralize the risk exposures. These, more complex options, are called exotic options, and they differ from the regular American and European options in the way they behave with respect to the underlying stock. Amongst these exotic options, we can find different kind of lookback options as well as quantile options which are two of the main options that are discussed in this thesis.   It has been known for a while how to price European call and put options by the Black-Scholes-Merton model. However, with more complex options also comes more complex pricing models and unlike the European options’ payoff which depend on the underlying stock price at time of maturity, the lookback option’s and quantile option’s payoff depend on the stock price movement over the total life span of the option contract. Hence, the pricing of these options depends on more variables than the classic Black-Scholes-Merton model include. One of these variables is the occupation time of the stochastic process which describes the stock price movement, this leads to a more complex and extensive pricing model than the general Black-Scholes-Merton’s model.   The objective of this thesis is to derive the pricing model that is used for quantile options and prove that the properties of quantile options are advantageous when compared to some specific lookback options, viz. call options on maximum.  It is concluded in the thesis that quantile options in fact converges to the call option on maximum for quantiles approaching 1. However, quantile options come with some different properties which potentially makes them a good substitute for the call option on maximum. This is a relevant factor for investors to consider when, and if, quantile options are introduced to the market.

Page generated in 0.0678 seconds