Spelling suggestions: "subject:"pyrazolopyrimidine"" "subject:"triazolopyrimidines""
1 |
Pyrazolo(3,4-d)Pyrimidines and adenosine receptors: a structure/activity studyScammells, Peter J., n/a January 1990 (has links)
Pyrazolopyrimidines are a general class of compounds which exhibit Aj adenosine receptor affmity. A number of pyrazolo(3,4-d)pyrimidine analogues of isoguanosine and i-methylisoguanosine has been synthesised. All compounds were tested forAi adenosine receptor affinity using a (311) R-PIA competitive binding assay. The N-i and N-5 positions were substituted with a number of different ailcyl and aryi groups. 3-Chiorophenyl substitution of the N-i position and butyl substitution of the N-5 position greatly enhanced the overall adenosine receptor affinity. Substitution by a methyl group at the N-7 position fixed the C-4 position in the imino tautomeric form. This resulted in a marked reduction in activity. The substitution of the N-2 position with a phenyl group produced an analogue with a similar structure to i,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX). A 2-phenyl substituent was favourable for interaction with the adenosine receptor. A number of pyrazolo(3,4-d)pyrirnidine analogues of 4,6-bis-a-carbamoylethylthio-i-phenylthiopyrazolo(3,4-d)pyrinhidine (DJB-KK) has also been synthesised and tested for Aj adenosine receptor affinity. 4,6-Bis-alkylthio-1-phenylpyrazolo(3,4-d)pyrimidines with a-carbamoylethyl and u-carbamoylpropyi groups were compared. The additional methyiene of the a-carbamoylpropyl group produced increased adenosine receptor affinity. 6-a-Carbamoylethylthio-4-mercapto-1-phenylpyrazolo(3,4-d)pyrimidine and 4-cc-carbamoylethylthio- i-phenylpyrazolo(3,4-dlpyrimidine were compared. Substitution of the C-6 position maintained activity, while substitution of the C-4 reduced activity.
|
2 |
DEVELOPMENT AND APPLICATION OF SYNTHETIC PROTOCOLS FOR THE GENERATION OF HETEROCYCLIC COMPOUND LIBRARIESTodorovic, Nikola 10 1900 (has links)
<p>The development of parallel syntheses that allow for rapid access to compound libraries is widely sought after in drug development and in the study of biological systems. These compound collections can be screened for biological activity and thereby provide useful structure-activity relationships (SAR) to help better understand the biological systems under investigation. This present thesis uses a small molecule library/SAR approach to probe a variety of biological problems such as: inhibiting the proliferation of breast cancer stem cells; inhibiting glutamine fructose-6-phosphate amidotransferase (GFAT, a key enzyme involved in Type II diabetes); and inhibiting aminoglycoside phosphotransferases (APHs, enzymes prevalent in antibiotic resistance). Specifically, synthetic protocols for the parallel preparation of libraries of 3-aryl-pyrimido[5,4-e][1,2,4]triazine-5,7-(1H,6H)-diones, 1-alkyl-3-aryl-<em>1</em>H-pyrazolo[3,4-d]pyrimidin-4-amines, 6-amino-1-alkyl-3-aryl-1<em>H</em>-pyrazolo[3,4-<em>d</em>]pyrimidin-4(5<em>H</em>)-ones, substituted 3-(4-chlorophenyl)-1-(-1<em>H</em>-1,2,3-triazol-4-yl)-1<em>H</em>-pyrazolo[3,4-<em>d</em>]pyrimidin-4-amines and substituted isoquinolines are described. In all cases, a robust synthetic approach was developed allowing for the generation of a library of heterocycles based on hit compounds from high throughput screening. The SARs gained from the assaying of the libraries generated are shown to help in the furthering of the biological understanding of each system.</p> / Doctor of Philosophy (PhD)
|
Page generated in 0.0416 seconds