• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 15
  • 11
  • 10
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 129
  • 40
  • 36
  • 22
  • 20
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Development and application of a capillary electrophoresis immunoassay for DNA lesions induced by ultraviolet light

Goulko, Alevtina Unknown Date
No description available.
52

Design, Synthesis and Biological Evaluation of 2,4-Disubstituted Pyrimidine Derivatives: Multifunctional Candidates as Potential Treatment Options for Alzheimer’s Disease

Mohamed, Tarek January 2011 (has links)
Alzheimer’s disease (AD) is a highly complex and rapidly progressive neurodegenerative disorder characterized by the systemic collapse of cognitive function and formation of dense amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs). AD pathology is derived from the cholinergic, amyloid and tau hypotheses, respectively. Current pharmacotherapy with known anti-cholinesterases, such as Aricept ® and Exelon ®, only offer symptomatic relief without any disease-modifying effects (DMEs). It is now clear that in order to prevent the rapid progression of AD, new therapeutic treatments should target multiple AD pathways as opposed to the traditional “one drug, one target” approach. This research project employed medicinal chemistry tools to develop multifunctional small organic molecules against three key targets of AD pathology – the cholinesterases (AChE and BuChE), AChE-induced and self-induced Aβ1-40 aggregation and generation (β-secretase). A chemical library composed of 112 derivatives was generated to gather structure-activity relationship (SAR) data. The derivatives were based on a novel, non-fused, 2,4-disubstituted pyrimidine ring (2,4-DPR) template with substituents at the C-2 and C-4 position varying in size, steric and electronic properties. Molecular modeling was utilized to investigate their binding modes within the target enzymes and along with the acquired SAR, the chemical library was screened to identify lead multifunctional candidates.
53

Cartographie des dimères cyclobutyliques de pyrimidines (DCP) induits par les UVA et étude des effets de certains gènes de réparation des mésappariements et du gène P53 muté sur la réparation par excision de nucléotides des DCP

Rochette, Patrick. January 1900 (has links) (PDF)
Thèse (Ph. D.)--Université Laval, 2005. / Titre de l'écran-titre (visionné le 28 septembre 2005). Bibliogr.
54

Characterization of Pyrimidine Biosynthesis in Pseudomonas putida Using Mutant and Wild Type Strains

Chang, Mingren 08 1900 (has links)
The biosynthesis of pyrimidines in Pseudomonas putida was investigated. In this study, pyrimidine requiring mutants were isolated by conventional mutagenesis and enrichment. The strains required exogenously supplied pyrimidines for growth and were found by enzyme assays to be deficient for the product of the pyrB gene encoding the enzyme aspartate transcarbamoylase. None of the intermediates of the pathway could supply the auxotrophic requirement of the strain; only preformed pyrimidines, metabolized via salvage pathways could suffice. Pyrimidine limitation in the mutant caused a slight but significant fifty per cent increase in expression of all the de novo biosynthetic enzymes. Pyrimidine starvation's effect on nucleotide pool levels was examined in the mutant and caused a marked swelling of the purine nucleotide pools.
55

Purification and Characterization of Proteolytic Aspartate Transcarbamoylase (ATCase) from Burkholderia cepacia 25416 and Construction of a pyrB1 Knock-out Mutant

Kim, Seongcheol 12 1900 (has links)
Burkholderia cepacia is a common soil bacterium of significance in agriculture and bioremediation. B. cepacia is also an opportunistic pathogen of humans causing highly communicable pulmonary infections in cystic fibrosis and immunocompromized patients. The pyrB gene encoding ATCase was cloned and ATCase was purified by the glutathione S-transferase gene fusion system. The ATCase in B. cepacia has been previously classified as a class A enzyme by Bethell and Jones. ATCase activity gels showed that B. cepacia contained a holoenzyme pyrBC complex of 550 kDa comprised of 47 kDa pyrB and 45 kDa pyrC subunits. In the course of purifying the enzyme, trimeric subunits of 140 kDa and 120 kDa were observed as well as a unique proteolysis of the enzyme. The 47 kDa ATCase subunits were cleaved to 40 kDa proteins, which still demonstrated high activity as trimers. The proteolysis site is between Ser74 and Val75 residues. To confirm this, we converted the Ser74 residue to an Ala and to an Arg by site-directed mutagenesis. After this primary sequence changed, the proteolysis of ATCase was not observed. To further investigate the characteristics of B. cepacia pyrB gene, a pyrB knock-out (pyrB-) was constructed by in vitro mutagenesis. In the assay, the 550 kDa holoenzyme and 140 kDa and 120 kDa trimers disappeared and were replaced with a previously unseen 480 kDa holoenzyme pyrB- strain. The results suggest that B. cepacia has two genes that encode ATCase. ATC1 is constitutive and ATC2 is expressed only in the absence of ATC1 activity. To check for the virulence of these two strains, a eukaryotic model virulence test was performed using Caenorhabditis elegans (C. elegans). The pyrB1+pyrB2+ (wild type) B cepacia killed the nematode but pyrB1-pyrB2+ B. cepacia had lost its virulence against C. elegans. This suggests that ATC1 (pyrB1) is involved in virulence in B.cepacia and ATC2 (pyrB2) is not.
56

Aspartate Transcarbamoylase of Aeromonas Hydrophila

Higginbotham, Leah 12 1900 (has links)
This study focused on the enzyme, aspartate transcarbamoylase (ATCase) from A. hydrophila, a Gram-negative bacterium found in fresh water. The molecular mass of the ATCase holoenzyme from A. hydrophila is 310 kDa. The enzyme is likely composed of 6 catalytic polypeptides of 34 kDa each and 6 regulatory polypeptides of 17 kDa each. The velocity-substrate curve for A. hydrophila ATCase is sigmoidal for both aspartate and carbamoylphosphate. The Km for aspartate was the highest to date for an enteric bacterium at 97.18 mM. The Km for carbamoylphosphate was 1.18 mM. When heated to 60 ºC, the specific activity of the enzyme dropped by more than 50 %. When heated to 100 ºC, the enzyme showed no activity. The enzyme's activity was inhibited by ATP, CTP or UTP.
57

Molecular and Kinetic Characterization of the Aspartate Transcarbamoylase Dihydroorotase Complex in Pseudomonas putida

Schurr, Michael J. (Michael John) 05 1900 (has links)
Aerobic Gram negative bacteria such as Pseudomonas putida were reported to possess class A ATCases and to have a M.W. of 360 kD. The nucleotide sequence of the P. putida pyrBC was determined to answer this question once and for all. The expected regulatory gene was not found. It is shown that the P. putida pyrB gene is overlapped by pyrC by 4 bp. The P.putida pyrB is 1005 bp (335 aa) in length and the pyrC is 1275 bp (425 aa) long. Both of these genes complement E. coli mutants with their respective genotypes. Another finding borne out from the sequence is an effector binding site at the N-terminus of pyrB of P. putIda. The binding site shows that effectors compete with carbamoylphosphate for the active site. In this dissertation, it is shown that the ATCase of P.putida is a trimer of M.W. of 109 kD (3 x 36.4 kD) and that the gene encoding pyrB is overlapped by the pyrC gene which encodes DHOase. It is also shown that the pyrBC encoded enzymes copurify as a dodecameric complex with a M.W. of 484 kD.
58

Regulatory Divergence of Aspartate Transcarbamoylase from the Pseudomonads

Linscott, Andrea J. (Andrea Jane) 12 1900 (has links)
Aspartate transcarbamoylase (ATCase) was purified from 16 selected bacterial species including existing Pseudomonas species and former species reassigned to new genera. An enormous diversity was seen among the 16 enzymes with each class of ATCase being represented. The smallest class, class C, with a catalytically active homotrimer, at 100 kDa, was found in Bacillus and other Gram positive bacteria. In this report, the ATCases from the Gram negatives, Shewanella putrefaciens and Stenotrophomonas maltophilia were added to class C membership. The enteric bacteria typify class B ATCases at 310 kDa, with a dodecameric structure composed of two catalytic trimers coupled to three regulatory dimers. A key feature of class B ATCases is the dissociability of the holoenzyme into regulatory and catalytic subunits which were enzymatically active. In this report, the ATCase from Pseudomonas indigofera was added to class B ATCases. The largest class, at 480 kDa, class A, contains the fluorescent Pseudomonas including most members of the 16S rRNA homology group I. Two polypeptides are produced from overlapping pyrBC' genes. The former, pyrB, encodes a 34 kDa catalytic polypeptide while pyrC' encodes a 45 kDa dihydroorotase-like polypeptide. Two non active trimers are made from six 34 kDa chains which are cemented by six 45 kDa chains to form the active dodecameric structure. Dissociation of the holoenyzme into its separate active subunits has not been possible. In this report, the ATCases from Comamonas acidovorans and C. testosteroni, were added to the class A enzymes. An even larger class of ATCase than class A at 600 kDa was discovered in Burkholderia cepacia. Stoichiometric measurements predict a dodecamer of six 39 kDa polypeptides and six 60 kDa polypeptides. Unlike other large pseudomonads ATCases, the enzyme from B. cepacia was dissociable into smaller active forms. Both the holoenzyme and its dissociated forms were regulated by nucleotide effectors. A new class of ATCase was proposed for B. cepacia type enzymes.
59

Characterization of Aspartate Transcarbamoylase and Dihydroorotase in Moraxella Catarrhalis

Fowler, Michael A. (Michael Allen), 1961- 05 1900 (has links)
Bacterial aspartate transcarbamoylases (ATCase's) are divided into three classes that correspond to taxonomic relationships within the bacteria. The opportunistic pathogen Moraxeila catarrhalis has undergone several reclassifications based on traditional microbiological criteria. The previously uncharacterized ATCase from M. catarrhalis was purified to homogeneity and its chemical properties characterized. The ATCase from M. catarrhalis is a class C ATCase with an apparent molecular mass of 480-520 kDa. The M. catarrhalis ATCase is a dodecomer composed of six 35 kDa polypeptides and six 45 kDa polypeptides. The enzyme has an unusually high pH optimum of greater than pH 10. The enzyme exhibited hyperbolic kinetic with a Km for aspartate of 2 mM. A single, separate 78 kDa dihydroorotase from M. catarrhalis was identified and it was not associated with ATCase. These data support the reclassification of M. catarrhalis out of the Neisseriaceae family.
60

Assembly of Pseudomonas putida Aspartate Transcarbamoylase and Possible Roles of the PyrC' Polypeptide in the Folding of the Dodecameric Enzyme

Hongsthong, Apiradee, 1970- 05 1900 (has links)
Aspartate transcarbamoylase (ATCase) of Pseudomonas putida consists of two different polypeptides, PyrB and PyrC' (Schurr et al, 1995). The role of the PyrC' and the assembly of PyrB and PyrC' have been studied. The ATCase made in vitro of P.putida PyrB with P.putida PyrC', and of E.coli PyrB with P.putida PyrC ' were generated under two different conditions, denaturation and renaturation, and untreated. It was found that PyrC' plays a role in the enzymatic regulation by ATP, CTP and UTP. In addition to playing a role in substrate binding, the PyrB polypeptide is also involved in effector binding (Kumar et al., manuscript in preparation). The most energetically preferred form of the P.putida WT is a dodecamer with a molecular mass of 480 kDa. The ratio between the PyrB and the PyrC' is 1:1. In studies of nucleotide binding, it was discovered that the P.putida PyrB was phosphorylated by a protein kinase in the cell extract. In the presence of 20 mM EDTA, this phosphorylation was inhibited and the inhibition could be overcome by the addition of divalent cations such as Zn2+ and Mg2+. This result suggested that the phosphorylation reaction required divalent cations. In the CAD complex of eukaryotes, phosphorylations of the CPSase and the linker region between ATCase and DHOase did not occur in the presence of UTP and it was hypothesized (Carrey, 1993) that UTP and phosphorylation(s) regulated the conformational change in the enzyme complex. Therefore, the same idea was approached with P.putida ATCase, where it was found that 1.0 mM UTP inhibited the phosphorylation of PyrB by more than 50%. These results suggested that the regulation of the conformational change of the P.putida ATCase might be similar to that of CAD. Furthermore, peptide mapping for phosphorylation sites was performed on P.putida ATCase WT, WT --11 amino acids and WT --34 amino acids from the N-terminus of the PyrB polypeptide. The results showed that the phosphorylation sites were located on the fragment that contained amino acid number-35 to amino acid number-112 from the N-terminus of the PyrB polypeptide.

Page generated in 0.0571 seconds