Spelling suggestions: "subject:"hydrolyzed photoresist""
1 |
Transparent carbon electrodes for spectroelectrochemical studiesWalker, Erin Kate 13 November 2012 (has links)
This dissertation describes the assessment and use of carbon optically transparent electrodes (C-OTEs) based on pyrolyzed photoresist films (PPFs) as a platform for spectroelectrochemical investigations. C-OTEs are examined for use in UV-Vis spectroelectrochemistry and electrogenerated chemiluminescence and compared to non-transparent glassy carbon (GC) and the conventional transparent electrode indium tin oxide (ITO). Chapter 1 provides a general overview of transparent electrodes, carbon electrodes, and spectroelectrochemistry. Chapter 2 details a UV-Vis spectroelectrochemical investigation of electrogenerated graphitic oxides (EGO) on the surface of the C-OTE in the presence of KCl. X-ray photoelectron spectroscopy and time of flight secondary ion mass spectroscopy are used to determine EGO composition. Several supporting electrolytes are investigated to determine the mechanism of EGO formation. Chapter 3 details experiments to electrochemically access the exciton emission from self-assembled double-walled tubular J-aggregates via electrogenerated chemiluminescence (ECL). Optimization of ECL intensity with respect to the coreactant concentration and the supporting electrolyte pH is performed on opaque glassy carbon electrodes. ECL and fluorescence spectra are compared, and C-OTEs are utilized to determine the source of disagreement between the spectra. Chapter 4 describes the preparation and characterization (i.e. transparency, thickness, sheet resistance, rms roughness, and electroactive surface area) of C-OTEs and explores C-OTEs for general use in ECL under a variety of conditions. Simultaneous cyclic voltammograms and ECL transients are obtained for three thicknesses of PPFs and compared to non-transparent GC and the conventional transparent electrode ITO in both front face and transmission electrode cell geometries. Despite positive potential shifts in oxidation and ECL peaks, attributed to the internal resistance of the PPFs that result from their nanoscale thickness, the PPFs display similar ECL activity to GC, including the low oxidation potential observed for amine coreactants on hydrophobic electrodes. Overall, C-OTEs are promising electrodes for spectroelectrochemical applications because they yield higher ECL than ITO in both oxidative-reductive and reductive-oxidative ECL modes, are more stable in alkaline solutions, display a wide potential window of stability, and have tunable transparency for more efficient detection of light in the transmission cell geometry. Future directions for this research are discussed in Chapter 5, which outlines several approaches to designing and improving spectroelectrochemical sensors. / text
|
2 |
Interfacial Electrochemistry and Surface Characterization: Hydrogen Terminated Silicon, Electrolessly Deposited Palladium & Platinum on Pyrolyzed Photoresist Films and Electrodeposited Copper on IridiumChan, Raymond 12 1900 (has links)
Hydrogen terminated silicon surfaces play an important role in the integrated circuit (IC) industry. Ultra-pure water is extensively used for the cleaning and surface preparation of silicon surfaces. This work studies the effects of ultra-pure water on hydrogen passivated silicon surfaces in a short time frame of 120 minutes using fourier transform infrared spectroscopy – attenuated total reflection techniques. Varying conditions of ultra-pure water are used. This includes dissolved oxygen poor media after nitrogen bubbling and equilibration under nitrogen atmosphere, as well as metal contaminated solutions. Both microscopically rough and ideal monohydride terminated surfaces are examined. Hydrogen terminated silicon is also used as the sensing electrode for a potentiometric sensor for ultra-trace amounts of metal contaminants. Previous studies show the use of this potentiometric electrode sensor in hydrofluoric acid solution. This work is able to shows sensor function in ultra-pure water media without the need for further addition of hydrofluoric acid. This is considered a boon for the sensor due to the hazardous nature of hydrofluoric acid. Thin carbon films can be formed by spin coating photoresist onto silicon substrates and pyrolyzing at 1000 degrees C under reducing conditions. This work also shows that the electroless deposition of palladium and platinum may be accomplished in hydrofluoric acid solutions to attain palladium and platinum nanoparticles on a this film carbon surface for use as an electrode. Catalysis of these substrates is studied using hydrogen evolution in acidic media, cyclic voltammetry, and catalysis of formaldehyde. X-ray diffractometry (XRD) is used to ensure that there is little strain on palladium and platinum particles. Iridium is thought to be a prime candidate for investigation as a new generation copper diffusion barrier for the IC industry. Copper electrodeposition on iridium is studied to address the potential of iridium as a copper diffusion barrier. Copper electrodeposition is studied using a current-transient technique to obtain insight into the nucleation and growth mechanism. Copper on iridum was annealed up to 600 degrees C. X-ray photoelectron spectroscopy and XRD confirm that electrodeposited copper exists in a metallic state. XRD shows that copper exists in the characteristic face-centered cubic (111) form. XRD also confirms the stability of the copper-iridium interface with no new peaks after annealing, which is indicative that no interaction occurs. Scanning electron microscopy, and Scotch ® Tape peel tests confirm the uniformity and strength of copper on iridium even after annealing to 600 degrees C.
|
3 |
Synthèse d'électrodes carbonées pour la détection électrochimique et insertion dans un système microfluidique / Carbon electrodes synthesis for electrochemical detection and insertion in a microfluidic systemPézard, Julien 18 December 2015 (has links)
L’objectif de ce travail de thèse est de préparer des microélectrodes à base carbone, montrant des propriétés électrochimiques adéquates pour réaliser des dispositifs microfluidiques qui pourraient servir à la détection de polluants en milieu aqueux. Ce travail décrit la réalisation d’électrodes carbonées de graphène, résine pyrolysée et diamant sur support SiC, permettant leur structuration et intégration dans un procédé d’étapes technologiques . L’élaboration de ces éléments implique la mise en œuvre de techniques utilisées dans la microélectronique : les procédés de mise en forme tels que la lithographie et la gravure sèche, mais aussi des techniques de dépôt ou encore de traitements thermiques. Cette thèse expose également l’élaboration d’électrodes composites à base de fibres de carbone et de polydiméthylsiloxane (PDMS) pour la réalisation de dispositifs microfluidiques simples et peu onéreux, permettant l’analyse électrochimique en flux continu. Les propriétés électrochimiques (cinétique, surface active, réversibilité, domaine d’électroactivité…) ainsi que physiques (rugosité, résistivité électrique…) de ces matériaux ont été déterminées. L’objectif principal de ce travail de caractérisation étant de définir les conditions optimales de synthèse menant à des matériaux viables pour des applications électrochimiques et bioélectrochimiques. Les performances de ces électrodes pour la détection électrochimique d’espèces en solution ont été étudiées sur des modèles de molécules redox et confrontées à la littérature. La biocompatibilité de ces électrodes a également été vérifiée à travers la réalisation de biocapteurs enzymatiques pour la détection de l’acétylthiocholine. L’activité de l’enzyme acétylcholinestérase (AChE) déposée à la surface de nos différentes matériaux carbonés a été conservée et a permis l’utilisation de ces électrodes modifiées comme transducteurs pour la détection de l’acétylthiocholine. / This thesis work is aimed at preparing novel carbon based microelectrodes, revealing adequate electrochemical characteristics for the realization of microfluidic devices which could apply for the detection of biological pollutants in aqueous environment. This work describes the realization of carbon based electrodes made of grahene, pyrolyzed photoresist films, and diamond on silicon carbide, allowing their structuration and integration in a process formed by multiple technological steps. The elaboration of these elements implies the use of technics used in microelectronics. Processes of patterning such as lithography and dry etching, but also deposition technics or even thermal treatments were used. This thesis also shows the elaboration of carbon microfibers and polydiméthylsiloxane (PDMS) based composite electrodes for the realization of simple and cheap microfluidic devices for electrochemical analysis in continuous flow. The electrochemical properties (kinetics, active surface, reversibility, potential range…) but also physical properties (rugosity, electrical resistivity…) of these materials have been determined. The main aim of the characterizations work has been to determine the optimal synthesis conditions leading to viable materials for electrochemical and bioelectrochemical applications. The performances of these electrodes for electrochemical detection of species in solution were investigated on classical redox molecules used in literature for comparison. The biocompatibility of these electrodes was also verified through the realization of enzymatic biosensors for the detection of acétylthiocholine. The activity of the enzyme acetylcholinesterase’s (AChE), deposited on the surface of our different carbon materials, was kept and permitted the use of these modified electrodes as transducers for acetylthiocholine detection.
|
Page generated in 0.0827 seconds