• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 9
  • 9
  • 9
  • 8
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cascade design of single input single output systems using H∞ and quantitative feedback theory methodologies

Lal, Mayank 17 February 2005 (has links)
This thesis considers the design of cascaded SISO control systems using the H∞ and QFT methodologies. In the first part of the thesis the actual advantages offered by Single Input Single Output (SISO) cascade loop structures are studied. In Quantitative Feedback Theory(QFT) it is emphasized that the use of cascaded loops is primarily for the reduction of bandwidth of the controllers. This in turn helps in considerable reduction of the adverse effects of high frequency noise. The question that arises then is whether or not there are any substantial benefits to be gained by cascade loop design in the low frequencies. It is shown using QFT methodology that there aren’t any advantages gained in the low frequencies with the use of cascaded design. In effect it is concluded that if the design is properly executed a single loop controller closed from the output to the input will be sufficient to meet the typical performance specifications. This is shown using an example where the mold level of a continuous casting process is to be controlled. The plant being used has considerable uncertainty so that features of robust control can be highlighted. In the second part the Robust Outer Loop bounds were generated analytically and examined for certain properties. It was compared to the bounds generated by already existing algorithms. In the third part the inner outer QFT design was modified with the inner loop being designed using H∞ with the concept of sensitivity shaping. This design was very similar to the pure QFT design with the added advantage of having some automation. In the fourth part the H∞ methodology was used to design a two loop control structure. The idea was to compare this design to the QFT design. It was seen that H∞ generated redundant controllers and pre filters.
2

Digital autoland system for unmanned aerial vehicles

Wagner, Thomas William, Jr. 17 September 2007 (has links)
Autoland controllers are prevalent for both large and small/micro unmanned aerial vehicles, but very few are available for medium sized unmanned aerial vehicles. These vehicles tend to have limited sensors and instrumentation, yet must possess good performance in the presence of modeling uncertainties, and exogenous inputs such as turbulence. Quantitative Feedback Theory is an attractive control methodology for this application, since it provides good performance and robustness for systems with structured model uncertainties. It has been successfully applied to many aircraft problems, but not to automatic landing, and only inner-loop synthesis has been presented in the literature. This paper describes the synthesis and development of an automatic landing controller for medium size unmanned aerial vehicles, using discrete Quantitative Feedback Theory. Controllers for the localizer, glideslope tracker, and automatic flare are developed, with a focus on the outer-loops synthesis. Linear, non real-time six degree-of-freedom Monte Carlo simulation is used to compare the Quantitative Feedback Theory controller to a baseline Proportional-Integral controller in several still air and turbulent landing scenarios. The Quantitative Feedback Theory controller provides performance similar to the Proportional-Integral controller in still and in turbulent air. Both controllers show similar robustness to turbulence, but the Quantitative Feedback Theory controller provides significantly better robustness to model uncertainties in turbulent air as well as to sensor characteristics in turbulence. Based on the results of the paper, the QFT controller is a promising candidate for an autoland controller.
3

Application of quantitative feedback theory to robust power system stabiliser design.

Chetty, Paramasivan. January 2003 (has links)
This thesis aims to verify the use of quantitative feedback theory (QFT) as a viable tool for designing power system stabilisers (PSS) for a single machine infinite bus system. The result of the QFT design is verified by simulation of the linear and nonlinear models representing the power system, and also by experimental procedures carried out in a laboratory. QFT falls into the classical control category, and is a frequency domain design method. It is an alternative to other design methods such as root locus and Hoo . The QFT design procedure can be extended to a multimachine system and QFT designs of MIMO systems has gained impetus. From theory, through simulation, and to the final laboratory testing on a single machine, infinite bus system, it will be shown that the application of QFT to robust PSS design does indeed work. QFT is a design method that allows the designer to choose a set of realistic operating points and to produce a design that include those points. Other methods allow the designer to produce a design for single operating point, and one has no idea how the design performs at the other operating points. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2003.
4

Nonlinear Multi-Mode Robust Control For Small Telescopes

Lounsbury, William P. 09 February 2015 (has links)
No description available.
5

Wind Turbine Collective and Individual Pitch Control Using Quantitative Feedback Theory

Wheeler, Laura 06 June 2017 (has links)
No description available.
6

Synchronous Voltage Reversal Control of Thyristor Controlled Series Capacitor

Ängquist, Lennart January 2002 (has links)
Series compensation of transmission lines is an effectiveand cheap method of improving the power transmission systemperformance. Series capacitors virtually reduces the length ofthe line making it easier to keep all parts of the power systemrunning in synchronism and to maintain a constant voltage levelthroughout the system. In Sweden this technology has been inuse since almost 50 years. The possibility to improve the performance of the ACtransmission system utilizing power electronic equipment hasbeen discussed a lot since about ten years. Some newsemiconductor based concepts have been developed beside thesince long established HVDC and SVC technologies. The ThyristorControlled Series Capacitor (TCSC) is one such concept. Byvarying the inserted reactance an immediate and well-definedimpact on the active power flow in the transmission line isobtained. Several potential applications, specifically poweroscillation damping, benefit from this capability. The conceptimplied the requirement to design a semiconductor valve, whichcan be inserted directly in the high-voltage power circuit.This certainly presented a technical challenge but thestraightforward approach appeared to be a cost-effectivealternative with small losses. It was also realized that the TCSC exhibits quite differentbehaviour with respect to subsynchronous frequency componentsin the line current as compared to the fixed series capacitorbank. This was a very interesting aspect as the risk ofsubsynchronous resonance (SSR), which just involves such linecurrent components, has hampered the use of series compensationin power systems using thermal generating plants. The thesis deals with the modelling and control aspects ofTCSC. A simplifying concept, the equivalent, instantaneousvoltage reversal, is introduced to represent the action of thethyristor controlled inductive branch, which is connected inparallel with the series capacitor bank in the TCSC. The idealvoltage reversal is used in the thesis in order to describe andexplain the TCSC dynamics, to investigate its apparentimpedance at various frequencies, as a platform forsynthesizing the boost control system and as the base elementin deriving a linear, small-signal dynamical model of thethree-phase TCSC. Quantitative Feedback Theory (QFT) then hasbeen applied to the TCSC model in order to tune its boostregulator taking into account the typical variation ofparameters that exists in a power system. The impact of theboost control system with respect to damping of SSR is finallybeing briefly looked at. <b>Keywords:</b>Thyristor Controlled Series Capacitor, TCSC,FACTS, reactive power compensation, boost control, phasorestimation, Quantitative Feedback Theory, subsynchronousresonance, SSR.
7

Synchronous Voltage Reversal Control of Thyristor Controlled Series Capacitor

Ängquist, Lennart January 2002 (has links)
<p>Series compensation of transmission lines is an effectiveand cheap method of improving the power transmission systemperformance. Series capacitors virtually reduces the length ofthe line making it easier to keep all parts of the power systemrunning in synchronism and to maintain a constant voltage levelthroughout the system. In Sweden this technology has been inuse since almost 50 years.</p><p>The possibility to improve the performance of the ACtransmission system utilizing power electronic equipment hasbeen discussed a lot since about ten years. Some newsemiconductor based concepts have been developed beside thesince long established HVDC and SVC technologies. The ThyristorControlled Series Capacitor (TCSC) is one such concept. Byvarying the inserted reactance an immediate and well-definedimpact on the active power flow in the transmission line isobtained. Several potential applications, specifically poweroscillation damping, benefit from this capability. The conceptimplied the requirement to design a semiconductor valve, whichcan be inserted directly in the high-voltage power circuit.This certainly presented a technical challenge but thestraightforward approach appeared to be a cost-effectivealternative with small losses.</p><p>It was also realized that the TCSC exhibits quite differentbehaviour with respect to subsynchronous frequency componentsin the line current as compared to the fixed series capacitorbank. This was a very interesting aspect as the risk ofsubsynchronous resonance (SSR), which just involves such linecurrent components, has hampered the use of series compensationin power systems using thermal generating plants.</p><p>The thesis deals with the modelling and control aspects ofTCSC. A simplifying concept, the equivalent, instantaneousvoltage reversal, is introduced to represent the action of thethyristor controlled inductive branch, which is connected inparallel with the series capacitor bank in the TCSC. The idealvoltage reversal is used in the thesis in order to describe andexplain the TCSC dynamics, to investigate its apparentimpedance at various frequencies, as a platform forsynthesizing the boost control system and as the base elementin deriving a linear, small-signal dynamical model of thethree-phase TCSC. Quantitative Feedback Theory (QFT) then hasbeen applied to the TCSC model in order to tune its boostregulator taking into account the typical variation ofparameters that exists in a power system. The impact of theboost control system with respect to damping of SSR is finallybeing briefly looked at.</p><p><b>Keywords:</b>Thyristor Controlled Series Capacitor, TCSC,FACTS, reactive power compensation, boost control, phasorestimation, Quantitative Feedback Theory, subsynchronousresonance, SSR.</p>
8

Integrated Design of Servo Mechatronic Systems for Driving Performance Improvement

Chen, Chin-yin 05 February 2009 (has links)
The servo mechatronic system design process usually covers two different engineering domains: structure design and system control. The relationship between these two domains is much closed. In order to reduce the disturbance caused by parameters in either one, the domain knowledge from those two different fields needs to be integrated. Thus, in order to reduce the disturbance caused by parameters in either one, the mechanical and controller design domains need to be integrated. Therefore, the integrated design method Design For Control (DFC), will be employed in this thesis. In this connect, it is not only applied to achieve minimal power consumption but also enhance structural performance and system response at same time. To investigate for the integrated design method, there are two common servo mechatronic systems: feed drive system and legged servo mechatronic system are used as the design platform. 1. Mechatronic Feed Drive System To investigate the method for integrated optimization, a mechatronic feed drive system of the machine tools is used as a design platform. The 3D software, Pro/Engineer is first used to build the 3D model to analyze and design structure parameters such as elastic deformation, nature frequency and component size, based on their effects and sensitivities to the structure. Additionally, in order to achieve system robust, Quantitative Feedback Theory (QFT), will be applied to determine proper control parameters for the controller. Therefore, overall physical properties of the machine tool will be obtained in the initial stage. Following this Design Then Control process, the iterative design process is following to enhance some of system performance. Finally, the technology design for control will be carried out to modify the structural and control parameters to achieve overall system performance. Hence, the corresponding productivity is expected to be greatly improved. 2. Legged Servo Mechatronic System The goal of this study is to develop a one-degree-of-freedom (DOF) legged servo mechatronic system with DFC. For this system, the kinematics and control dynamic analysis of legged servo mechatronic system have been solved by using four bar linkage with symmetrical coupler point, pantograph, and common position and velocity controller. In addition, in order to improvement system dynamic performance and reduce the control cost, the counterweight, that base on mass redistribution is employed to integrate structure and control into one design step for reduce shaking moment. Additionally, in order to improvement the system performance, the complete force balance is not only to take advantage of control cost, but also easy to control.
9

Robust Extremum Seeking Control Design

Odoemene, Daniel Okezuo Tarasius January 2022 (has links)
No description available.

Page generated in 0.1211 seconds