• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 487
  • 116
  • 59
  • 58
  • 29
  • 11
  • 10
  • 10
  • 10
  • 8
  • 6
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 960
  • 960
  • 124
  • 109
  • 101
  • 101
  • 86
  • 79
  • 75
  • 70
  • 69
  • 69
  • 68
  • 67
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

An external optical micro-cavity strongly coupled to optical centers for efficient single-photon sources

Cui, Guoqiang 03 1900 (has links)
xvii, 163 p. ; ill. (some col.) A print copy of this title is available from the UO Libraries, under the call number: SCIENCE QC446.2.C85 2008 / We present experimental and theoretical studies of a hemispherical, high-solid-angle external optical micro-cavity strongly coupled to nanoscale optical centers for cavity-quantum electrodynamics (QED) strong coupling and efficient single-photon sources. Implementations of single-photon sources based on various optical centers have been reported in the last three decades. The need for efficient single-photon sources, however, is still a major challenge in the context of quantum information processing. In order to efficiently produce single photons single optical centers are coupled to a resonant high-finesse optical micro-cavity. A cavity can channel the spontaneously emitted photons into a well-defined spatial mode and in a desired direction to improve the overall efficiency, and can alter the spectral width of the emission. It can also provide an environment where dissipative mechanisms are overcome so that a pure-quantum-state emission takes place. We engineered a hemispherical optical micro-cavity that is comprised of a planar distributed Bragg reflector (DBR) mirror, and a concave dielectric mirror having a radius of curvature 60 μm. Nanoscale semiconductor optical centers (quantum dots) are placed at the cavity mode waist at the planar mirror and are located at an antinode of the cavity field to maximize the coherent interaction rate. The three-dimensional scannable optical cavity allows both spatial and spectral selection to ensure addressing single optical centers. This unique micro-cavity design will potentially enable reaching the cavity-QED strong-coupling regime and realize the deterministic production of single photons. This cavity can also be operated with a standard planar dielectric mirror replacing the semiconductor DBR mirror. Such an all-dielectric cavity may find uses in atomic cavity-QED or cold-atom studies. We formulated a theory of single-photon emission in the cavity-QED strong-coupling regime that includes pure dipole dephasing and radiative decay both through the cavity mirror and into the side directions. This allows, for the first time, full modeling of the emission quantum efficiency, and the spectrum of the single photons emitted into the useful output mode of the, cavity. / Adviser: Michael G. Raymer
292

Hemispherical optical microcavity for cavity-QED strong coupling

Hannigan, Justin Michio, 1977- 12 1900 (has links)
xv, 204 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / This thesis reports on progress made toward realizing strong cavity quantum electrodynamics coupling in a novel micro-cavity operating close to the hemispherical limit. Micro-cavities are ubiquitous wherever the aim is observing strong interactions in the low-energy limit. The cavity used in this work boasts a novel combination of properties. It utilizes a curved mirror with radius in the range of 40-60 µm that exhibits high reflectivity over a large solid angle and is capable of producing a diffraction limited mode waist in the approach to the hemispherical limit. This small waist implies a correspondingly small effective mode volume due to concentration of the field into a small transverse distance. The cavity assembled for this investigation possesses suitably low loss (suitably low linewidth) to observe vacuum Rabi splitting under suitable conditions. According to best estimates for the relevant system parameters, this system should be capable of displaying strong coupling. The dipole coupling strength, cavity loss and quantum dot dephasing rates are estimated to be, respectively, g = 35µeV, κ = 30µeV, and γ = 15µeV. A survey of two different distributed Bragg reflector (DBR) samples was carried out. Four different probe lasers were used to measure transmission spectra for the coupled cavity-QED system. The system initially failed to display strong coupling due to the available lasers being too far from the design wavelength of the spacer layer, corresponding to a loss of field strength at the location of the quantum dots. Unfortunately, the only available lasers capable of probing the design wavelength of the spacer layer had technical problems that prevented us from obtaining clean spectra. Both a Ti:Al 2 O 3 and a diode laser were used to measure transmission over the design wavelength range. The cavity used here has many promising features and should be capable of displaying strong coupling. It is believed that with a laser system centered at the design wavelength and possessing low enough linewidth and single-mode operation across a wide wavelength range strong coupling should be observable in this system. / Committee in charge: Hailin Wang, Chairperson, Physics; Michael Raymer, Advisor, Physics; Jens Noeckel, Member, Physics; Richard Taylor, Member, Physics; Andrew Marcus, Outside Member, Chemistry
293

Thermoelectric properties of quantum dots and other low-dimensional systems

Nakpathomkun, Natthapon, 1973- 12 1900 (has links)
xii, 106 p. : ill. (some col.) / Quantum dots are systems in which all three spatial sizes are comparable to the Fermi wavelength. The strong confinement leads to a discrete energy spectrum. A goal of thermoelectric research is to find a system with a high thermoelectric figure of merit, which is related to the efficiency of solid-state heat engines. The delta-like density of states of quantum dots has been predicted to boost this figure of merit. This dissertation addresses some thermoelectric properties relevant to the thermal-to-electric energy conversion using InAs/InP quantum dots embedded in nanowires. In thermoelectric experiments, a temperature difference must be established and its value needs to be determined. A novel technique for measuring electron temperature across the dot is presented. A strong nonlinearity of the thermocurrent as a function of temperature difference is observed at a small ratio of temperature gradient and cryostat temperature. At large heating currents, a sign reversal is observed. Numerical calculations explore the contribution of the energy dependence of the transmission function to this effect. Depending on the relative contributions from sequential tunneling and co-tunneling, thermovoltages of quantum dots generally have one of two different lineshapes: a sawtooth shape or a shape similar to the derivative of the conductance peak. Here a simple picture is presented that shows that thermovoltage lineshape is accurately predicted from the energy level spacing inside the dot and the width of the transmission function. An important figure of merit of all heat engines is the efficiency at maximum power. Here the thermoelectric efficiency at maximum power of quantum dots is numerically compared to that of two other low-dimensional systems: an ideal one-dimensional conductor (1D) and a thermionic power generator (TI). The numerical calculations show that either 1D or TI systems can produce the highest maximum power depending on the operating temperature, the effective mass of the electron, and the effective area of the TI system. In spite of this, 1D systems yield the highest efficiency at maximum power. / Committee in charge: Dr. Richard Taylor, Chair; Dr. Heiner Linke, Research Advisor; Dr. Dietrich Belitz; Dr. David Johnson; Dr. David Strom
294

Modifikované peptidy ve spojení s kvantovými tečkami

Janů, Libor January 2013 (has links)
In this study, water soluble CdTe QDs of different emission wavelengths were prepared. Microwave synthesis was used to prepare CdTe QDs coated with mercaptopropionic acid (MPA). MPA ensures biocompatibility and good water solubility of QDs. Therefore QDs can be used directly in bioanalytics. Further, QDs modified with biotinylated glutathione (GSH) were prepared. In this case mercapto group (--SH) ensures a bonding of GSH to QDs surface and biotin serves as high specific linker for streptavidin, avidin or neutravidin modified analyte. Finally, peptide mediated immuno-quantum dots were prepared. CdTe QDs were coated with heptamer HWRGWVC which is able to bind Fc region of human immunoglobulin G.
295

The bioavailability and biological effects of nanomaterials towards Escherichia coli : with reference to the soil environment

Vassallo, Joanne January 2018 (has links)
Engineered nanomaterials (ENMs) are specifically designed with different functionalities to satisfy required industrial, medical or commercial purposes. The inevitable release of these materials to the environment may impact negatively bacteria that are essential for the ecosystem’s well-being. This work aimed to identify features that determine the hazardous nature of nanomaterials to bacteria. At first, the bacterial growth inhibition concentrations for silver (Ag), cupric oxide (CuO), cadmium telluride quantum dots (CdTe QDs), titanium dioxide (TiO2), nanodiamonds and multi-walled carbon nanotubes were determined on Escherichia coli K-12 MG1655 grown in 96-well plates. The nano-forms of Ag, CuO, TiO2 and the CdTe QDs were found to display more growth inhibitory effects than their bulk equivalents. The metal salts of silver and copper were still more toxic than their equivalent ENM forms; on the contrary the CdTe QDs were found to be more toxic than their metal salts equivalent. The surface coatings of the ENMs were not found to be significant contributors of bacterial growth inhibition. This screening assay could be adapted as a first tier approach; providing an early input into the hazard assessment of nanomaterials to bacteria. The upscale determination of bacterial growth inhibition tests in 250 ml Erlenmeyer flasks manifested similar results to those observed in 96-well plates. The growth inhibition tests with E. coli were also conducted in an anaerobic fermentative environment. The presence of the ENMs was not found to disrupt the functionality of the fermentation respiratory pathway of the bacterium. However, the results indicated a more severe bacterial growth inhibition response to the presence of silver, copper and the cadmium/tellurium based ENMs as compared to the aerobic growth exposures. Finally, from the adaptation of a human ingestion simulation of soil containing CuO NPs, no greater concerns of metal bioaccessibility were identified from the potential ingestion of the nano-forms of CuO versus the metal salt.
296

The photophysical properties of low symmetry phthalocyanines in conjunction with quantum dots

D'Souza, Sarah January 2011 (has links)
he synthesis, extensive spectroscopic characterization and photophysical studies of low symmetry zinc phthalocyanine have been conducted. Comparisons have been made taking into consideration the influence of the solvent properties as well as substituent type and position. Photosensitizing properties of the zinc phthalocyanine derivatives in the presence of thiol capped CdTe quantum dots (QDs) were compared. The QDs were used as energy transfer donors and to facilitate with energy transfer through Förster resonance energy transfer (FRET) from the QDs to the MPcs. The linkage of unsymmetrically substituted 4-monoaminophenoxy zinc phthalocyanine (ZnAPPc) to CdTe quantum dots capped with mercaptopropionic acid (MPA), L-cysteine (L-cys) or thioglycolic acid (TGA) has been achieved using the coupling agents ethyl-N3 dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy succinimide (NHS), which facilitate formation of an amide bond to form the QD-ZnAPPc-linked complex. The formation of the amide bond was confirmed using UV-Vis, Raman and IR spectroscopies, as well as AFM (atomic force microscopy). Förster resonance energy transfer (FRET) resulted in stimulated emission of ZnAPPc in both the linked (QDZnAPPc-linked) and mixed (QD:ZnAPPc-mixed) conjugates for MPA only. The linked L-cys and TGA complexes (QD-ZnAPPc-linked) gave the largest FRET efficiencies hence showing the advantages of covalent linking. Fluorescence quantum yields of QDs were decreased in QD:ZnAPPc-mixed and QD:ZnAPPc-linked. High triplet state quantum yields were obtained for the linked QD-phthalocyanine derivatives (ZnAPPc)and monoaminozinc phthalocyanine (ZnAPc) compared to when ZnAPPc and ZnAPc were mixed with MPA QDs without a chemical bond.
297

The design of quantum dots and their conjugates as luminescent probes for analyte sensing

Adegoke, Oluwasesan January 2014 (has links)
The design and applications of quantum dots (QDs) as fluorescent probes for analyte sensing is presented. Cadmium based thiol-capped QDs were employed as probe for the detection of analytes. Comparative studies between core CdTe and core-shell CdTe@ZnS QDs showed that the overall sensitivity and selectivity of the sensor was dependent on the nature of the capping agent and the QDs employed, hence making CdTe@ZnS QDs a more superior sensor than the core. To explore the luminescent sensing of QDs based on the fluorescence “turn ON” mode, L-glutathione-capped CdTe QDs was conjugated to 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT) to form a QDs-4AT conjugate system. The QDs-4AT nanoprobe was highly selective and sensitive to the detection of bromide ion with a very low limit of detection. Subsequently, metallo-phthalocyanines (MPcs) were employed as host molecules on the surface of QDs based on the covalent linking of the QDs to the MPc. Elucidation of the reaction mechanism showed that the fluorescence “turn ON” effect of the QDs-MPc probe in the presence of the analyte was due to axial ligation of the analytes to the Pc ring. Studies showed that the type of substituent attached to the MPc ring influenced the overall sensitivity of the probe. Additionally, a comparative investigation using newly synthesized phthalocyanine and triaza-benzcorrole complexes was conducted when these complexes were conjugated to CdSe@ZnS QDs for analyte sensing. Results showed that the triaza-benzcorrole complex can be employed as a host-molecule sensor but displayed a lower sensitivity for analyte sensing in comparison to the phthalocyanine complex.
298

Nonlinear optical studies of metallophtalocyanines and hemiporphyrazines in solution

Britton, Jonathan January 2014 (has links)
This thesis presents the study of the effects of CdTe-TGA quantum dots (QDs) on optical limiting ability of different phthalocyanine (Pc) complexes (5-12) containing Zn, Ga, In central metals and substituted with benzyloxyphenoxy, phenoxy, tertbutylphenoxy and amino groups in solution and in poly (methyl methacrylate) (PMMA) films. The optical limiting parameters of Pcs were higher for tertbutylphenoxy when compared to benzyloxyphenoxy and phenoxy substituents, in DMSO. Non-peripheral substitution decreased the optical limiting parameters. Third-order susceptibility (Im[χ⁽³⁾]/α) values of Pcs in the absence and presence of CdTe QDs were in the 10⁻¹² to 10⁻¹° esu cm range. Hyperpolarizabilities (γ) ranged from 10⁻³¹ to 10⁻²⁹ esu L for Pc alone or in mixture with QDs. The effect on the optical limiting abilities of twelve embedded phthalocyanines containing In, Ga, Zn and Al as central metals in polymer thin films was also examined. The effect of forming a covalent link zinc tetraamino phthalocyanine (12) with poly (methyl acrylic acid) (PMAA) and Zn (13) and OHAl (14) octacarboxy phthalocyanines to polyethylenimine (PEI) was also studied. The hyperpolarizability of the twelve phthalocyanines in polymer was found to be in the range of 10⁻²⁶ to 10⁻²⁴ esu.L. This is significantly higher than the hyperpolarizabilities of these phthalocyanines in solution. Non-linear optical (NLO) parameters were determined for phthalocyanine complexes containing In, Ga and Zn as central metals when embedded in PMMA polymer in the presence of quantum dots (QDs). The QDs mainly employed were CdTe-TGA (TGA = thioglylcolic acid). Triplet lifetimes increased as k (excited state (σex) to ground state (σg) absorption cross section ratio) values decreased with the addition of the CdTe-TGA to the phthalocyanines. The saturation energy density (Fsat) values were smaller in the films when compared to the solutions. Complex 7 tetrasubstituted with tert-butylphenoxy groups at non-peripheral positions was also studied in the presence of CdS-TGA, CdSe-TGA, fullerenes and single walled carbon nanotubes. There is a general improvement in optical limiting ability of Pc complexes in the presence of nanomaterials (NMs). Degradation studies seem to indicate that placing a phthalocyanine within a polymer thin film may protect it slightly from photo- and thermal degradation. 3(4), 15(16)-Bis-(4 -tert-butyl-phenoxy)-10, 22-diaminohemiporphyrazinato chloroindium hemiporphyrazine was synthesized from 1, 3, 5-triaminobenzene and 4-tert-butyl-phenoxyisoindoline. The structure of the complex was confirmed using mass, nuclear magnetic resonance and infrared spectroscopies. The nonlinear parameters of the compound was also analyzed in dimethylformamide and found to be significantly greater than previously analyzed phthalocyanines.
299

Water Soluble Photochromic Fluorescent Nanoprobes based on Diheteroarylethenes and Polymer Coated Quantum Dots

Díaz, Sebastián Andrés 02 July 2013 (has links)
No description available.
300

Micelas poliméricas contendo pontos quânticos a base de óxido de Zinco com superfície modificada para futura aplicação em diagnóstico e vetorização de fármacos /

Rissi, Nathalia Cristina. January 2016 (has links)
Orientador: Leila Aparecida Chiavacci Favorin / Banca: Renata Fonseca Vianna Lopez / Banca: Thalita Pedroni Formariz Pilon / Banca: Bruna G. Chiari-Andreo / Banca: Marlus Chorilli / Resumo: Nos últimos anos, é possível observar um grande interesse no desenvolvimento de sistemas multifuncionais direcionados ao diagnóstico e tratamento do câncer. Estes sistemas também conhecidos como "teranósticos" têm se mostrado interessantes, pois ampliam a capacidade de liberação prolongada de fármacos anticancerígenos em células específicas, além de proporcionar um monitoramento ótico através da luminescência de pontos quânticos. Diante deste contexto, o presente estudo teve como objetivo estabilizar os pontos quânticos a base de óxido de zinco (ZnO) em meio aquoso através da modificação de superfície com o 3-(Glycidyloxypropyl)trimethoxysilane (GPTMS) e também em meio orgânico através da modificação com o Hexadecyltrimethoxysilane (HTMS), permitindo assim a veiculação do mesmo em micelas poliméricas A ligação entre os pontos quânticos e as moléculas dos modificadores ocorreu através das reações de hidrólise e condensação, utilizando como catalisador básico o hidróxido de lítio. Esta reação conduziu a formação de uma camada de siloxano ao redor das nanopartículas e resultou nas ligações covalentes do tipo ZnO-Si-O. Ainda com o objetivo de aumentar a estabilidade do ZnO em meio orgânico e consequentemente suas propriedades luminescentes, foi sintetizado uma bicamada formada entre o Ácido Oleico (AO) e o HTMS. As modificações na superfície do ZnO foram confirmadas pelas técnicas de espectroscopia vibracional na região do infravermelho e também pela espectroscopia de fotoelétron... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In recent years, it is possible to observe a growing interest in the development of multifunctional systems used, that can be used in the diagnosis and treatment of cancer These systems also known as " theranostic " and have gained considerable attention due to their capacity of release anticancer drugs into specific cells, besides to optical monitoring through quantum dots. In this context, the present study was aimed to stabilize the quantum dots of of ZnO in water by modifying with 3-(Glycidyloxypropyl)trimethoxysilane (GPTMS) with and organic medium.by modifying with Hexadecyltrimethoxysilane (HTMS), thus allowing them to be incorporated into polymeric micelles The binding between the quantum dots with the modifiers occurred by hydrolysis and condensation reaction under basic catalysis by lithium hydroxide, thus leading to the formation of siloxane layer and resulted in ZnO-Si-O covalent bond. In order to improve the stability of ZnO-QDs and consequently their photoluminescence properties, was synthesized a coating bilayer by OA and HTMS. The ZnO surface modification was confirmed by infrared spectroscopy and also by X-ray photoelectron spectroscopy. The optical behavior was performed by absorption spectroscopy in the UV-Vis region. With this technique was possible to identify the wavelength limit associated with the excitonic peak and by monitoring of this peak was observed a great stability during 15 days for almost all samples of ZnO modified by GPTMS in water and ZnO ... (Complete abstract click electronic access below) / Doutor

Page generated in 0.0996 seconds