• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 487
  • 116
  • 59
  • 58
  • 29
  • 11
  • 10
  • 10
  • 10
  • 8
  • 6
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 960
  • 960
  • 124
  • 109
  • 101
  • 101
  • 86
  • 79
  • 75
  • 70
  • 69
  • 69
  • 68
  • 67
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Soft Lithographic Fabrication of Micro Optics and Integrated Photonic Components

Baig, Sarfaraz Niaz Ali 01 January 2008 (has links)
Optical waveguides, quantum dot emitters, and flat top beam shapers were designed and fabricated by two soft lithographic techniques; micro transfer molding (microTM) and vacuum assisted microfluidics (VAM). Optical waveguides were fabricated through a microTM technique that utilizes a poly dimethylsiloxane (PDMS) stamp. Generation of the flexible stamp required development of a channel waveguide pattern mask, defined by maskless lithography, and followed by construction of a three dimensional channel waveguide master, acquired through contact lithography on a glass substrate coated with SU-8 photoresist. Creation of a positive imprint replicating mold was accomplished through prepolymer PDMS solution settling and curing around the master. Waveguide fabrication was achieved through PDMS conformal contact on, and subsequent curing of, ultraviolet (UV) polymer resins on a silicon substrate. A slight modification of the microTM PDMS stamp, whereby inlet and outlet tunnels were incorporated, resulted in a novel VAM structure and correspondingly waveguides. Waveguide propagation losses were determined to be 1.14 dB/cm and 0.68 dB/cm for the microTM and VAM fabricated waveguides, respectively. A lithographic approach employing quantum dots doped in SU-8 photoresist has led to the realization of a new quantum dot emitter. Uniform coating of a doped material on a silver coated substrate was followed by contact mask lithography. Evaporation of a thin silver layer, upon development of the resultant quantum dot doped channel waveguide structure, facilitates confined emission. Successful edge emitting was demonstrated with blue laser pumping. The lithographic fabrication of such quantum dot emitter is successfully replaced by soft lithographic VAM technique. A flat top beam shaper, whose profile was developed on cured UV polymer resins, was fabricated by microTM technique. The master used for the development of the PDMS stamp was produced through an iterative wet etching process capable of achieving etching depths as small as a few nanometers. Comparisons between the reference wet etched beam shaper and the microTM based beam shaper produced near identical output flat top beams from incident Gaussian beams. Through this research work, successful soft lithographic fabrication of optical waveguides, quantum dot emitters, and flat top beam shapers were demonstrated. The vast potential exhibited by these and other related technologies show great promise for cost-effective mass production of various micro optics and integrated photonic components.
422

Green Chemical Synthesis of II-VI Semiconductor Quantum Dots

Shahid, Robina January 2012 (has links)
Nanotechnology is the science and technology of manipulating materials at atomic and molecular scale with properties different from bulk. Semiconductor QDs are important class of nanomaterials with unique physical and chemical properties owing to the quantum confinement effect. Size dependent optical properties make research on semiconductor QDs more attractive in the field of nanotechnology. Semiconductor QDs are usually composed of combination of elements from groups II–VI, III–V, or IV–VI of the periodic table. Group II-VI semiconductor QDs (ZnS, ZnSe, ZnO, CdSe, CdS) are most extensively studied systems, having bandgap which can be engineered through the variation of the material composition and size. Most common QDs are made of CdE (E=S, Se, Te) which are toxic. Recent environmental regulations restrict the use of toxic metals and therefore QDs containing nontoxic metals such as Zn are of great importance. The chemical synthesis of QDs involves different methods. Usually high temperature thermal decomposition of organometallic compounds in high boiling point organic solvents is used which needs long reaction time and involves complex synthesis procedures. New simpler and efficient synthetic routes with alternative solvents are required. Recently the synthesis of non-toxic QDs using green chemical routes is a promising approach receiving increasing attention. The aim of this Thesis is to develop novel routes for synthesis of semiconductor QDs employing green nanomaterial synthesis techniques. Therefore, in this work, we developed different green chemical routes mainly for the synthesis Zn-based QDs. Low temperature synthesis routes were developed for the synthesis of ZnS and ZnO QDs. Microwave irradiation was also used as efficient heating source which creates numerous nucleation sites in the solution, leading to the formation of homogeneous nanoparticles with small size and narrow size distribution. Different polar solvents with high MW absorption were used for synthesis of ZnS QDs. We also introduced ionic liquids as solvents in the synthesis of ZnS QDs using microwave heating. ILs are excellent reaction media for absorbing microwaves and are recognized as ‘green’ alternative to volatile and toxic organic solvents. For ZnS systems, the QDs produced by different methods were less than 5 nm in size as characterized by high-resolution transmission electron microscopy (HR-TEM). Selected area electron diffraction (SAED) patterns revealed that ZnS QDs synthesized by low temperature synthesis technique using conventional heating are of cubic crystalline phase while the QDs synthesized by using MW heating are of wurtzite phase. The optical properties were investigated by UV-Vis absorption spectrum and show a blue shift in absorption as compared to bulk due to quantum confinement effect. The photoluminescence (PL) spectra of ZnS QDs show different defect states related emission peaks and depend on different synthesis methods, high bandedge related emission is observed for ZnS QDs synthesized by using ionic liquids. ZnO QDs synthesized by low temperature route were found to be less than 4 nm in size and also show a blue shift in their absorption. The PL spectrum show bandedge related emission which is blue shifted compared with bulk with no emission originating from surface defect levels. The results show that QDs are of high crystalline quality with narrow size distribution. A comparative study of using conventional and MW heating in the synthesis of CdSe QDs was performed. The reactions involving microwave heating showed enhanced rates and higher yields. The developed methods involve all principles for green nanomaterials synthesis i.e. design of safer nanomaterials, reduced environmental impact, waste reduction, process safety, materials and energy efficiency. / <p>QC 20121115</p>
423

Few-Particle Effects in Semiconductor Quantum Dots: Spectrum Calculations on Neutral and Charged Exciton Complexes

Chang, Kuang-Yu January 2010 (has links)
It is very interesting to probe the rotational symmetry of semiconductor quantum dots for quantum information and quantum computation applications. We studied the effects of rotational symmetry in semiconductor quantum dots using configuration interaction calculation. Moreover, to compare with the experimental data, we studied the effects of hidden symmetry. The 2D single-band model and the 3D single-band model were used to generate the single-particle states. How the spectra affected by the breaking of hidden symmetry and rotational symmetry are discussed. The breaking of hidden symmetry splits the degeneracy of electron-hole single-triplet and triplet-singlet states, which can be clearly seen from the spectra. The breaking of rotational symmetry redistributes the weight percentage, due to the splitting of px and py states, and gives a small brightness to the dark transition, giving rise to asymmetry peaks. The asymmetry peaks of 4X, 5X, and 6X were analyzed numerically. In addition, Auger-like satellites of biexciton recombination were found in the calculation. There is an asymmetry peak of the biexciton Auger-like satellite for the 2D single-band model while no such asymmetry peak occurs for the 3D single-band model. Few-particle effects are needed in order to determine the energy separation of the biexciton main peak and the Auger-like satellite. From the experiments, it was confirmed that the lower emission energy peak of X2- spectrum is split. The competed splitting of the X2- spectra were revealed when temperature dependence was implemented. However, since the splitting is small, we suggest the X2- peaks are broadened in comparison with other configurations according to single-band models. Furthermore, the calculated excitonic emission patterns were compared with experiments. The 2D single-band model fails to give the correct energy order of the peaks for the few-particle spectra; on the other hand the peaks order from 3D single-band model consistent with experimental data.
424

Synthesis, Optical And Photoelectrical Investigations On PbS nano-,micro-structures

Pendyala, Naresh Babu 04 1900 (has links)
The thesis describes the synthesis of PbS nano-, micro-structures by colloidal and hydrothermal techniques. Size and morphology dependent luminescence studies were carried out in detail. Application oriented studies like ion sensing and modulation of luminescence are carried out on colloidal PbS QDs. Photoelectrical studies are carried out on various morphologies of PbS microstructures. We observe the persistent photoconductivity, growth and quenching of photocurrent, and a few novel phenomena in flower shaped PbS microstructures. This work is presented in eight chapters inclusive of summary and directions for future work. CHAPTER 1 provides a brief introduction to optical and photoelectrical properties of semiconductor quantum dots and hydrothermal technique in preparation of quantum structures. A review of PbS nanostructures and its technological applications are discussed. CHAPTER 2 provides the experimental techniques used in this work. First, the synthesis of PbS nano-, micro-structures by various methods, and characterization tools used in this work are briefly presented. CHAPTER 3 deals with the synthesis of PbS quantum dots in poly vinyl alcohol with various precursor concentrations to identify the surface states by temperature dependent photoluminescence (PL) measurements. Average bandgap value calculated from absorption measurements was 2.1 eV. We have observed that high-energy PL bands (>1.3 eV) are due to electron traps (Pb dangling bonds) and low-energy bands (<1 eV) are due to hole traps (S dangling bonds). By capping with thiol compounds (mercaptoethanol-C2 H5OSH), absence of the 1.67 eV band indicates the passivation of Pb dangling bonds. To explain above observed results, we propose a band diagram with distributed shallow to deep states and attributed them to the specific surface related defects (Pb or S). CHAPTER 4 discusses the ion sensing applications of PbS quantum dots. We found that the sulfur related dangling bonds are quite sensitive to different metallic ions (since mercaptoethanol passivates only Pb atoms). Sulfur related PL band (~ 1 eV) have shown an order of magnitude improvement in its intensity for Hg, Ag ions and relatively low enhancement for Zn, Cd ions at 1 µmol concentrations. However Cu quenches the luminescence. An important distinction may have to be made between PbS and Cd related quantum structures. The PbS QDs can distinguish between Cu & Hg, however Cd related QDs couldn’t distinguish between these two ions. Photo-brightening and photo-darkening is an interesting phenomena indicative of photo-induced ionic migration that either helps in enhancing the emission of sulfur related defect emission or degrades the emission properties depending on the ion concentration. This report is the first of its kind in ion sensing applications using PbS QDs. CHAPTER 5 discusses the results of duel beam excitation on trap luminescence of PbS QDs. By using different lasers simultaneously (514 nm and 670 nm), we have observed the reversible luminescence quenching of trap emission. The high-energy PL band (1.67 eV) has double the quenching effect compared to low-energy PL band (1.1 eV). The luminescence quenching mechanism is attributed to the re-emission of the charge carriers from the traps (photo-ionization) due to the simultaneous excitation with the second beam. The dependence of the temperature, the effect of two beam excitation intensities and modulation frequency dependent quenching mechanism are primarily focused in this chapter. The quenching mechanism is considered to be quite useful in the optical modulation devices. CHAPTER 6 discusses the PL results on various morphologies of PbS nano-, microstructures. Interestingly, after protecting the surface with organic ligands such as mercaptoethanol (C2 H5OSH), dendrite structures have shown high-energy bands (~ 1.0 eV) in the PL spectra, which indicate the existence of various quantum confinement regimes in different branches of dendrites. The anomalous temperature dependent behavior of PL intensity is attributed to the size distribution. CHAPTER 7 discusses the results of photoconductivity measurements on various morphologies of PbS nano-, micro-structures. Flower shaped structures have shown persistent photoconductivity (PPC). This observed PPC is attributed to the presence of potential barriers, which are created by the different confinement regimes or due to the lattice relaxation, which occurs due to the carrier trapping at surfaces. In PPC, the estimated time constants of both build up and decay transients using the stretched exponentials are of the order of few tens of seconds. In PPC measurements, we observe the PC quenching below 40 K and growth above this temperature. PC quenching is attributed to the transfer of photo-excited carriers to a metastable state. The presence of metastable state is supported by the dark conductivity measurements in flower shaped structures. CHAPTER 8 presents the summary and directions for the future work.
425

Exciton-plasmon interactions in metal-semiconductor nanostructures

Hellström, Staffan January 2012 (has links)
Semiconductor quantum dots and metal nanoparticles feature very strong light-matter interactions, which has led to their use in many photonic applications such as photodetectors, biosensors, components for telecommunications etc.Under illumination both structures exhibit collective electron-photon resonances, described in the frameworks of quasiparticles as exciton-polaritons for semiconductors and surface plasmon-polaritons for metals.To date these two approaches to controlling light interactions have usually been treated separately, with just a few simple attempts to consider exciton-plasmon interactions in a system consisting of both semiconductor and metal nanostructures.In this work, the exciton-polaritons and surface \\plasmon-polaritons are first considered separately, and then combined using the Finite Difference Time Domain numerical method coupled with a master equation for the exciton-polariton population dynamics.To better understand the properties of excitons and plasmons, each quasiparticle is used to investigate two open questions - the source of the Stokes shift between the absorption and luminescence peaks in quantum dots, and the source of the photocurrent increase in quantum dot infrared photodetectors coated by a thin metal film with holes. The combined numerical method is then used to study a system consisting of multiple metal nanoparticles close to a quantum dot, a system which has been predicted to exhibit quantum dot-induced transparency, but is demonstrated to just have a weak dip in the absorption. / <p>QC 20120417</p>
426

Toward Multiplexed Nucleic Acid Assays and Biosensors Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer (FRET)

Algar, Walter Russell 23 February 2011 (has links)
Research toward a multiplexed nucleic acid biosensor that uses quantum dots (QDs) as donors in a fluorescence resonance energy transfer (FRET) assay is described. Optical fibers were modified with mixed films composed of different colours of QDs and different oligonucleotide probes that served as scaffolds for the hybridization of the corresponding target nucleic acid sequences. Fluorescent dyes that were suitable as acceptors for each QD donor were associated with hybridization and provided an analytical signal through FRET-sensitized emission. Different detection channels were achieved through the combination of different donors and acceptors: green emitting QDs with Cyanine 3 or Rhodamine Red-X; and red emitting QDs with Alexa Fluor 647. A detection channel that used the direct excitation of Pacific Blue complemented the FRET pairs. One-plex, two-plex, three-plex and four-plex hybridization assays were demonstrated. A sandwich assay format was adopted to avoid target labeling. Detection limits were 1-10 nM (1-12 pmol) and analysis times were 1-4 h. Single nucleotide polymorphisms were discriminated in multiplexed assays, and the potential for reusability was also demonstrated. Non-selective interactions between QDs and oligonucleotides were characterized, and routes toward the optimization of the QD-FRET hybridization assays were identified. A basic model for multiple FRET pathways in a mixed film was also developed. In addition to the advantages of solid-phase assays, the combination of QDs and FRET was advantageous because it permitted multiplexed detection using a single excitation source and a single substrate, in the ensemble, and via ratiometric signals. Spatial registration or sorting methods, imaging or spatial scanning, and single molecule spectroscopy were not required. The research in this thesis is expected to enable new chip-based biosensors in the future, and is an original contribution to both bioanalytical spectroscopy and the bioanalytical applications of nanomaterials.
427

Toward Multiplexed Nucleic Acid Assays and Biosensors Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer (FRET)

Algar, Walter Russell 23 February 2011 (has links)
Research toward a multiplexed nucleic acid biosensor that uses quantum dots (QDs) as donors in a fluorescence resonance energy transfer (FRET) assay is described. Optical fibers were modified with mixed films composed of different colours of QDs and different oligonucleotide probes that served as scaffolds for the hybridization of the corresponding target nucleic acid sequences. Fluorescent dyes that were suitable as acceptors for each QD donor were associated with hybridization and provided an analytical signal through FRET-sensitized emission. Different detection channels were achieved through the combination of different donors and acceptors: green emitting QDs with Cyanine 3 or Rhodamine Red-X; and red emitting QDs with Alexa Fluor 647. A detection channel that used the direct excitation of Pacific Blue complemented the FRET pairs. One-plex, two-plex, three-plex and four-plex hybridization assays were demonstrated. A sandwich assay format was adopted to avoid target labeling. Detection limits were 1-10 nM (1-12 pmol) and analysis times were 1-4 h. Single nucleotide polymorphisms were discriminated in multiplexed assays, and the potential for reusability was also demonstrated. Non-selective interactions between QDs and oligonucleotides were characterized, and routes toward the optimization of the QD-FRET hybridization assays were identified. A basic model for multiple FRET pathways in a mixed film was also developed. In addition to the advantages of solid-phase assays, the combination of QDs and FRET was advantageous because it permitted multiplexed detection using a single excitation source and a single substrate, in the ensemble, and via ratiometric signals. Spatial registration or sorting methods, imaging or spatial scanning, and single molecule spectroscopy were not required. The research in this thesis is expected to enable new chip-based biosensors in the future, and is an original contribution to both bioanalytical spectroscopy and the bioanalytical applications of nanomaterials.
428

Sharp Interfacial Structure of InAs/InP Quantum Dots Grown by a Double-Cap Method: A Cross-Sectional Scanning Tunneling Microscopy Study

Akanuma, Y., Yamakawa, I., Sakuma, Y., Usuki, T., Nakamura, A. January 2007 (has links)
No description available.
429

Optical Spectroscopy of GaN/Al(Ga)N Quantum Dots Grown by Molecular Beam Epitaxy

Yu, Kuan-Hung January 2009 (has links)
GaN quantum dots grown by molecular beam epitaxy are examined by micro-photoluminescence. The exciton and biexciton emission are identified successfully by power-dependence measurement. With two different samples, it can be deduced that the linewidth of the peaks is narrower in the thicker deposited layer of GaN. The size of the GaN quantum dots is responsible for the binding energy of biexciton (EbXX); EbXX decreases with increasing size of GaN quantum dots. Under polarization studies, polar plot shows that emission is strongly linear polarized. In particular, the orientation of polarization vector is not related to any specific crystallography orientation. The polarization splitting of fine-structure is not able to resolve due to limited resolution of the system. The emission peaks can be detected up to 80 K. The curves of transition energy with respect to temperature are S-shaped. Strain effect and screening of electric field account for  blueshift of transition energy, whereas Varshni equation stands for redshifting. Both blueshifting and redshifting are compensated at temperature ranging from 4 K to 40 K.
430

The Toxicological Effects of Engineered Nanoparticles, Quantum Dots, in Estuarine Fish

Blickley, Twyla Michelle January 2010 (has links)
<p>Engineered nanoparticles (ENPs) are a part of everyday life. They are incorporated into a wide array of products including sunscreens, clothing, electronics, paints, and automobiles. One particular type of ENP, quantum dots (QDs), are fluorescent semi&ndash;conducting nanocrystals, and are touted as the next generation of medical tracers and energy&ndash;efficient light bulbs. The continued development and expansion of commercial applications for QDs ensure that they will enter the aquatic environment following manufacture, use, and disposal. Unfortunately, very little information exists on the bioavailability and sub&ndash;lethal toxicological effects of QDs in aquatic organisms. The studies described in this dissertation focused on determining the toxicological effects of Lecithin&ndash;encapsulated CdSe/ZnS quantum dots in larval and adult <italic>Fundulus heteroclitus</italic> (the mummichog). </p> <p>Quantum dot dispersion is greatly influenced by environmental parameters such as pH, natural organic matter concentration, and ionic strength. Lecithin&ndash;encapsulated core&ndash;shell QDs aggregated and precipitated from suspension in 20 ppt seawater. QD aggregates adhered to the exterior chorion of <italic>Fundulus</italic> embryos in aqueous embryo exposures, but did not traverse the chorion and deposit into the body of the fry. Incidences of developmental abnormalities increased and hatching rates declined in embryos exposed to the highest concentration tested (100 &mu;g/ml). </p> <p>Dietary assessments showed that QDs were bioavailable to adult <italic>Fundulus</italic>. While QDs or their degradation products traversed the intestinal epithelial and were deposited to the liver, less than 0.01% of the cadmium from the QDs was retained in the liver and intestinal tissues. QD uptake did not cause significant changes in hepatic total glutathione or lipid peroxidation levels, nor did it statistically alter the expression of genes involved in metal metabolism and oxidative stress&mdash;metallothionein, glutathione&ndash;s&ndash;transferase, glutathione peroxidase, and superoxide dismutases. There was, however, a clear gender&ndash;specific trend in the level of Cu/Zn&ndash;superoxide dismutase transcription. In addition, QDs did impact fecundity presumably by feminizing male fish. Vitellogenin transcription was elevated and relative gonad size reduced in male <italic>Fundulus</italic> consuming 10 &mu;g QD per day. Lastly, QDs or their degradation products were maternally transferred to the eggs following six to eight weeks of parental exposure, thus posing a risk to <italic>Fundulus</italic> progeny. Based on the results of these studies, it is apparent that chronic exposure to QDs could result in adverse affects in teleosts and other organisms inhabiting estuarine environments.</p> / Dissertation

Page generated in 0.048 seconds