Spelling suggestions: "subject:"quantum computational""
131 |
Role of Nonlocality and Counterfactuality in Quantum CryptographyAkshatha Shenoy, H January 2014 (has links) (PDF)
Quantum cryptography is arguably the most successfully applied area of quantum information theory. In this work, We invsetigate the role of quantum indistinguishability in random number
generation, quantum temporal correlations, quantum nonlocality and counterfactuality for quantum cryptography. We study quantum protocols for key distribution, and their security in the conventional setting, in the counterfactual paradigm, and finally also in the device-independent scenario as applied to prepare-and-measure schemes.
We begin with the interplay of two essential non-classical features like quantum indeterminism and quantum indistinguishability via a process known as bosonic stimulation is discussed. It
is observed that the process provides an efficient method for macroscopic extraction of quantum randomness.
Next, we propose two counterfactual cryptographic protocols, in which a secret key bit is generated even without the physical transmission of a particle. The first protocol is semicounterfactual in the sense that only one of the key bits is generated using interaction-free
measurement. This protocol departs fundamentally from the original counterfactual key distribution protocol in not encoding secret bits in terms of photon polarization. We discuss how the security in the protocol originates from quantum single-particle non-locality. The second protocol is designed for the crypto-task of certificate authorization, where a trusted third party authenticates an entity (e.g., bank) to a client. We analyze the security of both protocols under various general incoherent attack models.
The next part of our work includes study of quantum temporal correlations. We consider the use of the Leggett-Garg inequalities for device-independent security appropriate for prepare-and-measure protocols subjected to the higher dimensional attack that would completely undermine standard BB84.
In the last part, we introduce the novel concept of nonlocal subspaces constructed using the graph state formalism, and propose their application for quantum information splitting. In particular, we use the stabilizer formalism of graph states to construct degenerate Bell operators,
whose eigenspace determines the nonlocal subspace, into which a quantum secret is encoded and shared among an authorized group of agents, or securely transmitted to a designated secret retriever. The security of our scheme arises from the monogamy of quantum correlations. The quantum violation of the Bell-type inequality here is to its algebraic maximum, making this approach inherently suitable for the device-independent scenario.
|
132 |
Hamiltoniens locaux et information quantique en dimensions réduitesBoudreault, Christian 11 1900 (has links)
Cette thèse exploite les liens profonds entre la physique des systèmes quantiques
locaux, les propriétés non locales de leurs états fondamentaux et le contenu en information
de ces états. Les deux premiers chapitres sont consacrés à l’application des
systèmes quantiques locaux pour les fins d’une tâche informationnelle précise, soit le
calcul quantique. Au terme d’un bref survol de la théorie, nous proposons un patron
pour le calcul quantique universel et évolutif pouvant être réalisé sur une grande
variété de plateformes physiques, et démontrons qu’il est particulièrement résilient
face à un bruit anisotrope. Les quatre derniers chapitres sont pour leur part consacrés
à l’approche informationnelle des systèmes quantiques à corps multiples. Nous
décrivons les principales propriétés des corrélations et de l’intrication dans les états
fondamentaux des systèmes de dimensions réduites les plus courants, en distinguant
systèmes non critiques et systèmes critiques. Nous montrons que ces propriétés sont
fortement modifiées par la présence de frustration géométrique dans les chaînes de
spins. Enfin, nous réalisons une analyse exhaustive des corrélations et de l’intrication
dans les états fondamentaux de deux théories quantiques de champs non triviales. / This thesis exploits the deep connections between the physics of local quantum
systems, the nonlocal features in their ground states, and the information content of
these states. The first two chapters are dedicated to the application of local quantum
systems for the purpose of a definite information-theoretical task, namely quantum
computation. After a brief survey of the theory, we propose a scheme for scalable
universal quantum computation that, we argue, could be implemented on a wide
variety of physical platforms, and show that it is particularly resilient to anisotropic
noise. The last four chapters are dedicated to the information-theoretical approach
of many-body quantum systems. We describe the main properties of correlations and
entanglement in the ground states of the most common low-dimensional many-body
systems, distinguishing between noncritical systems and critical ones. We show how
these properties can be dramatically modified by the presence of geometric frustration
in spin chains. Finally, we perform an intensive study of correlations and
entanglement in the ground states of two nontrivial one-dimensional quantum field
theories.
|
133 |
Fases geométricas, quantização de Landau e computação quâantica holonômica para partículas neutras na presença de defeitos topológicosBakke Filho, Knut 06 August 2009 (has links)
Made available in DSpace on 2015-05-14T12:14:06Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1577961 bytes, checksum: c71d976d783495df566e0fa6baadf8ca (MD5)
Previous issue date: 2009-08-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We start this work studying the appearance of geometric quantum phases as in the relativistic
as in the non-relativistic quantum dynamics of a neutral particle with permanent
magnetic and electric dipole moment which interacts with external electric and magnetic
fields in the presence of linear topological defects. We describe the linear topological
defects using the approach proposed by Katanaev and Volovich, where the topological
defects in solids are described by line elements which are solutions of the Einstein's equations
in the context of general relativity. We also analyze the in
uence of non-inertial
effects in the quantum dynamics of a neutral particle using two distinct reference frames
for the observers: one is the Fermi-Walker reference frame and another is a rotating frame.
As a result, we shall see that the difference between these two reference frames is in the
presence/absence of dragging effects of the spacetime which makes its in
uence on the
phase shift of the wave function of the neutral particle. In the following, we shall use our
study of geometric quantum phases to make an application on the Holonomic Quantum
Computation, where we shall show a new approach to implement the Holonomic Quantum
Computation via the interaction between the dipole moments of the neutral particle
and external fields and the presence of linear topological defects. Another applications for
the Holonomic Quantum Computation is based in the structure of the topological defects
in graphene layers. In the presence of topological defects, a graphene layer shows two
distinct phase shifts: one comes from the mix of Fermi points while the other phase shift
comes from the topology of the defect. To provide a geometric description for each phase
shift in the graphene layer, we use the Kaluza-Klein theory where we establish that the
extra dimension describes the Fermi points in the graphene layer. Hence, we can implement
the Holonomic Quantum Computation through the possibility to build cones and
anticones of graphite in such way we can control the quantum
uxes in graphene layers.
In the last part of this work, we study the Landau quantization for neutral particles as in
the relativistic dynamics and non-relativistic dynamics. In the non-relativistic dynamics,
we study the Landau quantization in the presence of topological defects as in an inertial
as in a non-inertial reference frame. In the relativistic quantum dynamics, we start our
study with the Landau quantization in the Minkowisky considering two different gauge
fields. At the end, we study the relativistic Landau quantization for neutral particles in
the Cosmic Dislocation spacetime. / Neste trabalho estudamos inicialmente o surgimento de fases geometricas nas dinâmicas quânticas relativística e não-relativística de uma partícula neutra que possui momento de
dipolo magnético e elétrico permanente interagindo com campos elétricos e magnéticos externos
na presença de defeitos topológicos lineares. Para descrevermos defeitos topológicos
lineares usamos a aproximação proposta por Katanaev e Volovich, onde defeitos lineares em sólidos são descritos por elementos de linha que são soluções das equações de Einstein
no contexto da relatividade geral. Analisamos também a
inuência de efeitos não-inerciais na dinâmica quântica de uma partícula neutra em dois tipos distintos de referenciais para
os observadores: um é o referencial de Fermi-Walker e outro é um referencial girante.
Vemos que a diferença entre dois referenciais está na presença/ausência de efeitos de arrasto
do espaço-tempo que irá influenciar diretamente na mudança de fase na funçãao de
onda da partícula neutra. Em seguida, usamos nosso estudo de fases geométricas para
fazer aplicações na Computação Quântica Holonômica onde mostramos uma nova maneira de implementar a Computação Quântica Holonômica através da interação entre momentos
de dipolo e campos externos e pela presença de defeitos topológicos lineares. Outra
aplicação para a Computação Quântica Holonômica está baseada na estrutura de defeitos
topológicos em um material chamado grafeno. Na presença de defeitos topológicos lineares,
esse material apresenta duas fases quânticas de origens distintas: uma da mistura
dos pontos de Fermi e outra da topologia do defeito. Para dar uma descrição geométrica para a origem de cada fase no grafeno usamos a Teoria de Kaluza-Klein, onde a dimensão extra sugerida por esta teoria descreve os pontos de Fermi no grafeno. Portanto, a implementação da Computação Quântica Holonômica no grafeno está baseada na possibilidade
de construir cones e anticones de grafite de tal maneira que se possa controlar os fluxos
quânticos no grafeno. Na última parte deste trabalho estudamos a quantização de Landau
para partículas neutras tanto na dinâmica não-relativística quanto na dinâmica relativística. Na dinâmica não-relativítica, estudamos a quantização de Landau na presença
de defeitos em um referecial inercial e, em seguida, em um referencial nãoo-inercial. Na
dinâmica relativística, estudamos inicialmente a quantização de Landau no espaço-tempo
plano em duas configurações de campos diferentes. Por fim, estudamos a quantização de
Landau relativística para partículas neutras no espaço-tempo da deslocação cósmica.
|
Page generated in 0.1042 seconds