• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum Speed-ups for Boolean Satisfiability and Derivative-Free Optimization

Arunachalam, Srinivasan January 2014 (has links)
In this thesis, we have considered two important problems, Boolean satisfiability (SAT) and derivative free optimization in the context of large scale quantum computers. In the first part, we survey well known classical techniques for solving satisfiability. We compute the approximate time it would take to solve SAT instances using quantum techniques and compare it with state-of-the heart classical heuristics employed annually in SAT competitions. In the second part of the thesis, we consider a few classically well known algorithms for derivative free optimization which are ubiquitously employed in engineering problems. We propose a quantum speedup to this classical algorithm by using techniques of the quantum minimum finding algorithm. In the third part of the thesis, we consider practical applications in the fields of bio-informatics, petroleum refineries and civil engineering which involve solving either satisfiability or derivative free optimization. We investigate if using known quantum techniques to speedup these algorithms directly translate to the benefit of industries which invest in technology to solve these problems. In the last section, we propose a few open problems which we feel are immediate hurdles, either from an algorithmic or architecture perspective to getting a convincing speedup for the practical problems considered.
2

Detecting quantum speedup for random walks with artificial neural networks / Att upptäcka kvantacceleration för slumpvandringar med artificiella neuronnät

Linn, Hanna January 2020 (has links)
Random walks on graphs are an essential base for crucial algorithms for solving problems, like the boolean satisfiability problem. A speedup of random walks could improve these algorithms. The quantum version of the random walk, quantum walk, is faster than random walks in specific cases, e.g., on some linear graphs. An analysis of when the quantum walk is faster than the random walk can be accomplished analytically or by simulating both the walks on the graph. The problem arises when the graphs grow in size and connectivity. There are no known general rules for what an arbitrary graph not having explicit symmetries should exhibit to promote the quantum walk. Simulations will only answer the question for one single case, and will not provide any general rules for properties the graph should have. Using artificial neural networks (ANNs) as an aid for detecting when the quantum walk is faster on average than random walk on graphs, going from an initial node to a target node, has been done before. The quantum speedup may not be more than polynomial if the initial state of the quantum walk is purely in the initial node of the graph. We investigate starting the quantum walk in various superposition states, with an additional auxiliary node, to maybe achieve a larger quantum speedup. We suggest different ways to add the auxiliary node and select one of these schemes for use in this thesis. The superposition states examined are two stabiliser states and two magic states, inspired by the Gottesman-Knill theorem. According to this theorem, starting a quantum algorithm in a magic state may give an exponential speedup, but starting in a stabilizer state cannot give an exponential speedup, given that only gates from the Clifford group are used in the algorithm, as well as measurements are performed in the Pauli basis. We show that it is possible to train an ANN to classify graphs into what quantum walk was the fastest for various initial states of the quantum walk. The ANN classifies linear graphs and random graphs better than a random guess. We also show that a convolutional neural network (CNN) with a deeper architecture than earlier proposed for the task, is better at classifying the graphs than before. Our findings pave the way for automated research in novel quantum walk-based algorithms. / Slumpvandringar på grafer är essensiella i viktiga algoritmer för att lösa olika problem, till exempel SAT, booleska uppfyllningsproblem (the satisfiability problem). Genom att göra slumpvandringar snabbare går det att förbättra dessa algoritmer. Kvantversionen av slumpvandringar, kvantvandringar, har visats vara snabbare än klassiska slumpvandringar i specifika fall, till exempel på vissa linjära grafer. Det går att analysera, analytiskt eller genom att simulera vandringarna på grafer, när kvantvandringen är snabbare än slumpvandingen. Problem uppstår dock när graferna blir större, har fler noder samt fler kanter. Det finns inga kända generella regler för vad en godtycklig graf, som inte har några explicita symmetrier, borde uppfylla för att främja kvantvandringen. Simuleringar kommer bara besvara frågan för ett enda fall. De kommer inte att ge några generella regler för vilka egenskaper grafer borde ha. Artificiella neuronnät (ANN) har tidigare används som hjälpmedel för att upptäcka när kvantvandringen är snabbare än slumpvandingen på grafer. Då jämförs tiden det tar i genomsnitt att ta sig från startnoden till slutnoden. Dock är det inte säkert att få kvantacceleration för vandringen om initialtillståndet för kvantvandringen är helt i startnoden. I det här projektet undersöker vi om det går att få en större kvantacceleration hos kvantvandringen genom att starta den i superposition med en extra nod. Vi föreslår olika sätt att lägga till den extra noden till grafen och sen väljer vi en för att använda i resen av projektet. De superpositionstillstånd som undersöks är två av stabilisatortillstånden och två magiska tillstång. Valen av dessa tillstånd är inspirerat av Gottesmann- Knill satsen. Enligt satsen så kan en algoritm som startar i ett magiskt tillstånd ha en exponetiell uppsnabbning, men att starta i någon stabilisatortillstånden inte kan ha det. Detta givet att grindarna som används i algoritmen är från Cliffordgruppen samt att alla mätningar är i Paulibasen. I projektet visar vi att det är möjligt att träna en ANN så att den kan klassificera grafer utifrån vilken kvantvandring, med olika initialtillstånd, som var snabbast. Artificiella neuronnätet kan klassificera linjära grafer och slumpmässiga grafer bättre än slumpen. Vi visar också att faltningsnätverk med en djupare arkitektur än tidigare föreslaget för uppgiften är bättre på att klassificera grafer än innan. Våra resultat banar vägen för en automatiserad forskning i nya kvantvandringsbaserade algoritmer.

Page generated in 0.0459 seconds