• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Physical Constraints on a New LoBAL QSO at z = 4.82

Yi, Weimin, Green, Richard, Bai, Jin-Ming, Wang, Tinggui, Grier, Catherine J., Trump, Jonathan R., Brandt, William N., Zuo, Wenwen, Yang, Jinyi, Wang, Feige, Yang, Chenwei, Wu, Xue-Bing, Zhou, Hongyan, Fan, Xiaohui, Jiang, Linhua, Yang, Qian, Varricatt, Watson, Kerr, Tom, Milne, Peter, Benigni, Sam, Wang, Jian-Guo, Zhang, Jujia, Wang, Fang, Wang, Chuan-Jun, Xin, Yu-Xin, Fan, Yu-Feng, Chang, Liang, Zhang, Xiliang, Lun, Bao-Li 03 April 2017 (has links)
Very few low-ionization broad absorption line (LoBAL) QSOs have been found at high redshifts, to date. One high-redshift LoBAL QSO, J0122+1216, was recently discovered by the Lijiang 2.4 m Telescope, with an initial redshift determination of 4.76. Aiming to investigate its physical properties, we carried out follow-up observations in the optical and near-IR spectroscopy. Near-IR spectra from UKIRT and P200 confirm that it is a LoBAL, with a new redshift determination of 4.82 +/- 0.01 based on the Mg II emission-line. The new Mg II redshift determination reveals strong blueshifts and asymmetry of the high-ionization emission lines. We estimate a black hole mass of similar to 2.3 x 10(9) M-circle dot and Eddington ratio of similar to 1.0 according to the empirical Mg II-based single-epoch relation and bolometric correction factor. It is possible that strong outflows are the result of an extreme quasar environment driven by the high Eddington ratio. A lower limit on the outflowing kinetic power (>0.9% L-Edd) is derived from both emission and absorption lines, indicating that these outflows play a significant role in the feedback process that regulates the growth of its black hole, as well as host galaxy evolution.

Page generated in 0.0468 seconds