• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quasitoric manifolds in equivariant complex bordism

Darby, Alastair Edward January 2013 (has links)
Our aim is to study the role of omnioriented quasitoric manifolds in equivariant complex bordism. These are a well-behaved class of even-dimensional smooth closed manifolds with the action of a half-dimensional compact torus and an equivariant stably complex structure. They are beneficial objects to work with as they can be described completely in terms of combinatorial data.We include an overview of equivariant complex bordism, highlighting the relationship between localisation and restriction to fixed point data. By keeping in mind the particularly interesting case when the group in question is the compact torus, we revisit work found in [BPR10], reinterpreting and expanding certain results relating to the universal toric genus.We then consider oriented torus graphs of stably complex torus manifolds and classify these using a boundary operator on exterior polynomials related to geometric equivariant complex bordism classes of the manifolds. We also extend the connected sum construction of quasitoric pairs which allows for a more general notion of the equivariant connected sum of omnioriented quasitoric manifolds.We then consider whether an equivariant version of Buchstaber and Ray’s result in [BR98] holds; that is, does there exist an omnioriented quasitoric manifold in every geometric equivariant complex bordism class in which they naturally exist? We conjecture that this is true showing that we have a combinatorial model for such objects and exhibiting low-dimensional examples.
2

Spin Cobordism and Quasitoric Manifolds

Hines, Clinton M 01 January 2014 (has links)
This dissertation demonstrates a procedure to view any quasitoric manifold as a “minimal” sub-manifold of an ambient quasitoric manifold of codimension two via the wedge construction applied to the quotient polytope. These we term wedge quasitoric manifolds. We prove existence utilizing a construction on the quotient polytope and characteristic matrix and demonstrate conditions allowing the base manifold to be viewed as dual to the first Chern class of the wedge manifold. Such dualization allows calculations of KO characteristic classes as in the work of Ochanine and Fast. We also examine the Todd genus as it relates to two types of wedge quasitoric manifolds. Background matter on polytopes and toric topology, as well as spin and complex cobordism are provided.

Page generated in 0.0656 seconds