Spelling suggestions: "subject:"qubit""
11 |
Time dependent entanglement properties, and other quantum-information aspects, of two-qubits systems interacting with an environmentHamadou Ibrahim, Alpha 11 August 2010 (has links)
Quantum systems usually suffer from unavoidable interactions with the environment. In most experiments, it is virtually impossible to isolate the system under study from the environment. It is thus imperative to study and understand how quantum systems interact with their surroundings. In the present study, I consider the evolution of quantum entanglement in a two-qubit system interacting with an environment in a regime where the non-Markovian effects are important. The present thesis is organized as follows: Chapter one is a general introduction to the thesis. In chapter two, some preliminary concepts that will be used in the subsequent chapters will be introduced and defined. These concepts include qubits, density matrix, Quantum entanglement and Entropic measures in quantum information. Ways to detect or quantify entanglement in a quantum system will also be discussed in the section on quantum entanglement. Chapter three will be about open quantum systems in general: concepts like master equations, Markovian quantum systems and non-Markovian quantum systems will be briefly reviewed. Chapter four will deal with time dependent entanglement features of two-qubit and multi-qubit systems interacting with an environment, basically all the results obtained in my study will be presented there. Some general conclusions will be drawn in chapter five. Copyright / Dissertation (MSc)--University of Pretoria, 2010. / Physics / unrestricted
|
12 |
Topics in the theory of excitations in granular matterTiwari, Rakesh P. 15 January 2010 (has links)
No description available.
|
13 |
Caracterização da evolução adiabática em cadeias de spin / Characterization of adiabatic evolution in spin chainsGrajales, Julián Andrés Vargas 27 March 2018 (has links)
A computação quântica adiabática tem sua pedra angular no teorema adiabático, cuja eficiência está relacionada tradicionalmente à proporção da variação temporal do Hamiltoniano que descreve o sistema e o gap mínimo entre o estado fundamental e o primeiro excitado. Normalmente, esse gap tende a diminuir quando aumenta o número de recursos (bit quântico: qubit) de um processador quântico, exigindo dessa maneira variações lentas do Hamiltoniano para assim garantir uma dinâmica adiabática. Entre os candidatos para a sua implementação física, estão os qubits baseados em circuitos supercondutores os quais têm um grande potencial, por causa de seu alto controle e escalabilidade promissora. No entanto, quando esses qubits são implementados, eles têm uma fonte intrínseca de ruído devido a erros de fabricação, que não podem ser desprezados. Por isso, nesta tese nós estudamos como os efeitos causados pelas flutuações dos parâmetros físicos do qubit afetam o comportamento da fidelidade da computação, realizando com esse propósito a simulação da dinâmica de cadeias de spin pequenas desordenadas. A partir do análise exaustivo desse estúdio foi possível propor uma estratégia que permite aumentar a fidelidade considerando um sistema ruidoso. Por outro lado, motivados pelo interesse de obter critérios suficientes e necessários para satisfazer uma computação quântica adiabática e pelo fato que ainda não existe uma condição de adiabaticidade geral apesar de existir inúmeras propostas, nós apresentamos um novo critério que manifesta suficiência para sistemas mais gerais e finalmente apresentamos evidências de que tal condição seria um quantificador consistente. / Adiabatic quantum computation has its cornerstone in the adiabatic theorem, whose efficiency is traditionally related to the ratio of the Hamiltonian temporal variation that describes the system and the minimum gap between the ground state and the first excited state. Usually, this gap tends to decrease when the number of quantum resources (quantum bit: qubit) of a quantum processor increases, thus it requires slow variations of the Hamiltonian to ensure an adiabatic dynamic. Among the candidates for its physical implementation are the qubits superconducting circuit-based which have great potential because of their high control and promising scalability. However, when these qubits are implemented, they have an intrinsic source of noise due to manufacturing errors that can not be despised. Therefore, in this thesis we study how the effects caused by the fluctuations of the physical parameters of the qubit affect the behavior of the fidelity of the computation, accomplishing with this purpose the simulation of the dynamics of small disordered spin chains. From the exhaustive analysis of this studio, it was possible to propose a strategy that allows to increase the fidelity considering a noisy system. On the other hand, motivated by the interest of obtaining sufficient and necessary criteria to satisfy an adiabatic quantum computation and the fact that there is still no general adiabaticity condition despite there being numerous proposals, we present a new criterion that manifests sufficiency for more general systems and we finally presented evidence that such a condition would be a consistent quantifier.
|
14 |
Dynamique des systèmes quantiques ouverts décohérence et perte d'intrication / Dynamics of open quantum systems : decoherence and desentanglement.Vogelsberger, Sylvain 22 June 2012 (has links)
On commence dans le chapitre d'introduction par rappeler les résultats majeurs sur l'intrication et les systèmes quantiques ouverts. Puis en particulier on prouve la désintrication en temps fini pour deux qubits (systèmes quantiques à deux niveaux d'énergie) en interaction avec des bains thermiques distincts à température positive. On propose dans le premier chapitre de cette thèse une méthode pour empêcher la désintrication en temps fini basée sur des mesures continues sur les bains et utilisant la théorie des sauts quantiques et celle des équations différentielles stochastiques. Dans le deuxième chapitre on étudie un sous-ensemble des états de deux qubits : celui des états qu'on peut représenter dans la base canonique pour une matrice ayant une forme de X. Cela nous permet d'obtenir des formules explicites pour la décomposition d'un état X séparable en au plus cinq états purs produits. On généralise ensuite cette étude à l'ensemble des états obtenus à partir d'états X par conjugaison avec des unitaires locaux. Puis on donne un algorithme pour décomposer tout état séparable de cet ensemble en une combinaison convexe de cinq états purs produits. Le troisième chapitre de cette thèse propose l'étude de l'évolution de l'intrication de deux qubits dans un modèle d'interactions répétées avec la même chaîne de spins dans les limites de van Hove et de couplage singulier. En particulier on observe une intrication asymptotique non nulle quand la chaîne est à température infinie et des phénomènes de création d'intrication quand la chaîne est à température nulle. / In the introductory chapter we first give the major results about entanglement and open quantum systems. In particular we give the proof of entanglement sudden death (ESD) for two qubits (two level quantum systems) interacting with their own heat bath at positive temperature. We propose in the first chapter a method to protect qubits against ESD, based on continuous measurements of the baths and using the theory of quantum jumps and stochastic differential equations. In the second chapter, we study a subset of two qubits states : the set of states that we can represent in the canonical basis by an X-form matrix. We also give explicit formulas for decompositions of a separable X-state in a convex sum of five pure product states. We generalize this study to the set of states obtained from X-states by a conjugation with local unitary operators. Furthermore, we give an algorithm to decompose a separable state of this set in a convex sum of five pure product states. Finally, in the third chapter we study entanglement of two qubits in a model of repeated interactions with the same spin chain in the van Hove and singular coupling limits. In particular we observe non zero asymptotic entanglement when the chain is at infinite temperature and phenomenons of entanglement sudden birth when the chain is at zero temperature.
|
15 |
Caracterização da evolução adiabática em cadeias de spin / Characterization of adiabatic evolution in spin chainsJulián Andrés Vargas Grajales 27 March 2018 (has links)
A computação quântica adiabática tem sua pedra angular no teorema adiabático, cuja eficiência está relacionada tradicionalmente à proporção da variação temporal do Hamiltoniano que descreve o sistema e o gap mínimo entre o estado fundamental e o primeiro excitado. Normalmente, esse gap tende a diminuir quando aumenta o número de recursos (bit quântico: qubit) de um processador quântico, exigindo dessa maneira variações lentas do Hamiltoniano para assim garantir uma dinâmica adiabática. Entre os candidatos para a sua implementação física, estão os qubits baseados em circuitos supercondutores os quais têm um grande potencial, por causa de seu alto controle e escalabilidade promissora. No entanto, quando esses qubits são implementados, eles têm uma fonte intrínseca de ruído devido a erros de fabricação, que não podem ser desprezados. Por isso, nesta tese nós estudamos como os efeitos causados pelas flutuações dos parâmetros físicos do qubit afetam o comportamento da fidelidade da computação, realizando com esse propósito a simulação da dinâmica de cadeias de spin pequenas desordenadas. A partir do análise exaustivo desse estúdio foi possível propor uma estratégia que permite aumentar a fidelidade considerando um sistema ruidoso. Por outro lado, motivados pelo interesse de obter critérios suficientes e necessários para satisfazer uma computação quântica adiabática e pelo fato que ainda não existe uma condição de adiabaticidade geral apesar de existir inúmeras propostas, nós apresentamos um novo critério que manifesta suficiência para sistemas mais gerais e finalmente apresentamos evidências de que tal condição seria um quantificador consistente. / Adiabatic quantum computation has its cornerstone in the adiabatic theorem, whose efficiency is traditionally related to the ratio of the Hamiltonian temporal variation that describes the system and the minimum gap between the ground state and the first excited state. Usually, this gap tends to decrease when the number of quantum resources (quantum bit: qubit) of a quantum processor increases, thus it requires slow variations of the Hamiltonian to ensure an adiabatic dynamic. Among the candidates for its physical implementation are the qubits superconducting circuit-based which have great potential because of their high control and promising scalability. However, when these qubits are implemented, they have an intrinsic source of noise due to manufacturing errors that can not be despised. Therefore, in this thesis we study how the effects caused by the fluctuations of the physical parameters of the qubit affect the behavior of the fidelity of the computation, accomplishing with this purpose the simulation of the dynamics of small disordered spin chains. From the exhaustive analysis of this studio, it was possible to propose a strategy that allows to increase the fidelity considering a noisy system. On the other hand, motivated by the interest of obtaining sufficient and necessary criteria to satisfy an adiabatic quantum computation and the fact that there is still no general adiabaticity condition despite there being numerous proposals, we present a new criterion that manifests sufficiency for more general systems and we finally presented evidence that such a condition would be a consistent quantifier.
|
16 |
CÃlculo do entrelaÃamento de estados puros de 4 e 6 qubitsDavid Sena Oliveira 02 March 2012 (has links)
FundaÃÃo de Amparo à Pesquisa do Estado do Cearà / Esta tese à dividida em trÃs partes. A primeira parte apresenta uma revisÃo dos conceitos bÃsicos de entrelaÃamento de estados quÃnticos com dois e mÃltiplos qubits, incluindo os monÃtonos de entrelaÃamento e a medida do entrelaÃamento Groveriano, que à calculada atravÃs de um algoritmo genÃtico. A segunda parte foca na proposta de uma medida de entrelaÃamento para estados de quatro qubits que mensura apenas estados com entrelaÃamento genuÃno. Exemplos do cÃlculo do entrelaÃamento de estados de quatro qubits, usando a medida proposta, quando estes sÃo processados por circuitos quÃnticos, sÃo apresentados. Na terceira parte, a medida proposta à estendida, para calcular o entrelaÃamento genuÃno de estados quÃnticos de seis qubits. SimulaÃÃes numÃricas foram realizadas para mostrar a variaÃÃo, criaÃÃo e destruiÃÃo do entrelaÃamento de estados puros de
seis qubits.
|
17 |
Controlling Quantum Information DevicesMotzoi, Felix January 2012 (has links)
Quantum information and quantum computation are linked by a common mathematical and physical framework of quantum mechanics. The manipulation of the predicted dynamics and its optimization is known as quantum control. Many techniques, originating in the study of nuclear magnetic resonance, have found common usage in methods for processing quantum information and steering physical systems into desired states. This thesis expands on these techniques, with careful attention to the regime where competing effects in the dynamics are present, and no semi-classical picture exists where one effect dominates over the others. That is, the transition between the diabatic and adiabatic error regimes is examined, with the use of such techniques as time-dependent diagonalization, interaction frames, average-Hamiltonian expansion, and numerical optimization with multiple time-dependences. The results are applied specifically to superconducting systems, but are general and improve on existing methods with regard to selectivity and crosstalk problems, filtering of modulation of resonance between qubits, leakage to non-compuational states, multi-photon virtual transitions, and the strong driving limit.
|
18 |
Controlling Quantum Information DevicesMotzoi, Felix January 2012 (has links)
Quantum information and quantum computation are linked by a common mathematical and physical framework of quantum mechanics. The manipulation of the predicted dynamics and its optimization is known as quantum control. Many techniques, originating in the study of nuclear magnetic resonance, have found common usage in methods for processing quantum information and steering physical systems into desired states. This thesis expands on these techniques, with careful attention to the regime where competing effects in the dynamics are present, and no semi-classical picture exists where one effect dominates over the others. That is, the transition between the diabatic and adiabatic error regimes is examined, with the use of such techniques as time-dependent diagonalization, interaction frames, average-Hamiltonian expansion, and numerical optimization with multiple time-dependences. The results are applied specifically to superconducting systems, but are general and improve on existing methods with regard to selectivity and crosstalk problems, filtering of modulation of resonance between qubits, leakage to non-compuational states, multi-photon virtual transitions, and the strong driving limit.
|
19 |
Probabilidades negativas e tomografia de QubitsSilva, Alcenísio José de Jesus 28 March 2007 (has links)
Made available in DSpace on 2016-06-02T20:16:42Z (GMT). No. of bitstreams: 1
1653.pdf: 1076652 bytes, checksum: 1961cc3ed414f75dc01fe54141a52bb2 (MD5)
Previous issue date: 2007-03-28 / Financiadora de Estudos e Projetos / In this dissertation we approached the tomography of discrete systems, understood as the representation
and the reconstruction of states. For the tomography we used distribution functions
of symmetrical pseudo-probabilities. The coefficients of the distribution function of "probabilities"
are "joint probabilities", that eventually can be negative, associated to incompatible observables.
The "negative probabilities" contains not only information about the measurements
of counts, but also on the quantum state of the systems. We present the argument of Scully,
Walther and Schleich that uses double slit interference to give a meaning to the "negative probabilities"
and we propose one alternative example using beam splitters and an single photon.
Like this, moreover we define distribution functions based in generalized quantization axes for
any directions, we present the physical interpretation of the resulting "negative probabilities".
We showed the reason because all explanation usually done to justify "negative probabilities"
seems to be contradictory and are not convincing. Is the interpretation of the "negative probabilities"
that retain the heart, not only of the present work, but also, of the whole Quantum
Mechanics, its only mystery, as Feynman says / Nesta dissertação abordamos a tomografia de sistemas discretos, entendida como a representação
e a reconstrução de estados. Para a tomografia utilizamos funções distribuição de
pseudo-probabilidades simétricas. Os coeficientes dessa função distribuição de "probabilidades"
são "probabilidades conjuntas", que eventualmente podem ser negativas, associadas a observáveis
incompatíveis. As "probabilidades negativas" contém não só informação sobre as
medições de contagens, mas também sobre o estado quântico dos sistemas. Apresentamos o
argumento de Scully, Walther e Schleich que utiliza interferência na dupla-fenda para dar um
significado às "probabilidades negativas" e propomos um exemplo alternativo utilizando divisores
de feixe e um único fóton. Assim, além de definir funções de distribuição baseadas em
eixos de quantização generalizados para direções quaisquer, apresentamos a interpretação física
das "probabilidades negativas" decorrentes. Mostramos porque toda explicação que possa ser
feita para justificar "probabilidade negativa" parece ser contraditória e não é convincente. É na
interpretação das pseudo-probabilidades onde está o coração não só do presente trabalho, mas
também, de toda a Mecânica Quântica, o seu único mistério, como diz Feynman
|
20 |
Nonlinear and stochastic driving of a superconducting qubitSilveri, M. (Matti) 25 April 2013 (has links)
Abstract
The topic of this thesis is superconducting electric circuits. Technical advances have made possible the experimental study of Josephson junction based circuit elements which sustain quantum mechanical properties long enough to be denoted as quantum devices. The quantum state can be controlled with electronic variables and measured using standard electrical setups. The research is motivated by the possibility to examine quantum phenomena in circumstances that can be customized, prospects of new quantum devices, and the development of quantum information processing.
This thesis presents theoretical studies on the nonlinear and stochastic driving of a superconducting quantum two-level system (qubit). We first investigate the energy level shifts a single-Cooper-pair transistor under large amplitude driving realized via the inherently nonlinear Josephson energy by using an external magnetic flux. The effective driving field substantially deviates from a circular polarization and linear coupling. The energy level shifts are compared to the cases of a vanishing and a weak driving field, measured as the Stark shift and the generalized Bloch-Siegert shift, respectively. We describe criteria for the natural basis of the analytical and the numerical calculations. In addition to that, we develop a formalism based on the Floquet method for the weak probe measurement of the strongly driven qubit.
In the latter part of the thesis research, we study utilization of a stochastic driving field whose time evolution is not regular but follows probabilistic laws. We concentrate on the motional averaging phenomenon and show that it can be measured with an unparalleled accuracy by employing a flux-modulated transmon qubit. As the stochastically modulated qubit is simultaneously measured with a moderate driving field, we develop a theoretical description accounting the possible interference effects between the modulation and the drive. The comparison with experimental results shows good agreement. Motional averaging phenomenon can be applied to estimate the properties of fluctuation processes occurring in qubits, e.g., the quasiparticle tunneling or the photon shot noise. Resting on the motional averaging, we anticipate that the qubit dephasing times can be improved if one can accelerate the dynamics of two-level fluctuators.
We apply a semiclassical formalism where the qubit is treated with quantum mechanical concepts whereas the driving fields are classical. In the solution procedure, the numerical results support the main analytical understanding. As the theoretical results are extensively compared to reflection measurements, we construct an explicit connection between the dynamics of the studied quantum devices and the measured reflection coefficient.
|
Page generated in 0.0379 seconds