• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation Of Mechanical Properties And Microstructure Of Steel-Wires

Maissara, Khalifa January 2021 (has links)
Wear and friction are among the major problems faced in several industries such as mining industry. This creates challenges to select better materials with good wear behavior in order to improve the service life of the components. In the present project, three steel wire grades OH 70, OH 75 and OH 101 have been heat treated by quenching and partitioning heat treatment and tested using three wear testing methods. The wear tests performed were a pin-on-disc test, dry-pot test and slurry pot-test, and the results were compared with the conventional quenched and tempered steel. Tensile tests, hardness, impact Charpy tests, scanning electron microscope, optical microscope, X-ray diffraction and magnetic measurements were applied to characterize mechanical properties and microstructure of the steels before wear tests. The results showed that the quenched and partitioned steels with considerable amount of retained austenite had higher ductility and good impact toughness than the quenched and tempered steels. After the pin on disc tests, OH 75 grade showed the highest wear resistance, while the lowest wear resistance was obtained by OH 70 grade. The damage mechanisms identified after pin-on-disc were abrasion and oxidative wear. During erosive wear, almost no measurable wear was recorded under the dry pot conditions, while the slurry pot test owned significant wear mass loss. The main modes of the worn surfaces after erosive tests were ploughing and cutting. In addition, cracks were also observed.
2

Designing a Heat Treatment to Achieve Ductile Advanced High Strength Steels

Laarich, Abdellatif January 2020 (has links)
Heat treatment is a way to significantly change materials properties. When presented with materials that lack certain mechanical properties, it is possible to change its chemical properties and microstructures by applying heat. This can help achieve better yield strength, ductility and toughness. This project discusses the effects of multiple distinct heat treatment methods for several materials in order to improve ductility and elongation without diminishing strength. The materials in question are High Aluminum Steel and Strenx 700MC steel, the first being under development and the second being a commercially available steel. These steels show promise to be used as high ductility, high strength, and 3rd generation steels. The heat treatments can change the mechanical proprieties of the base materials in order to optimize these steels for applications in vertical access solutions. The heat treatments in this project were Quenching and Partitioning (QP), Quenching and Tempering (QT), Austempering (AUST), Intercritical Heat Treatment (IHT) and other usual heat treatments such as Double normalizing (D-Norm). First, the most beneficial type of the above mentioned heat treatments was selected for each steel and series of heat treatments were performed in order to identify and optimize the best method for each steel. Then, heat treated samples underwent a series of tests to numerically quantify their properties and compare them to the existing steels in Alimak’s applications. The results show that Quenching and Partitioning is the most promising heat treatment for optimizing strength and ductility in High Aluminum Steel, with elongation values up to 19% together with yield strengths of 700 MPa. For Strenx 700MC a combination of temperature and time was found that gave an elongation of above 25% with a yield strength of 450 MPa. The explanation for the good properties was partly grain refinement and phase transformations during heat treatments.
3

Estudo da viabilidade de uso do aço ferramenta AISI D6 para corte de placas de baterias chumbo-ácido. / Study of viability of use of steel AISI D6 tool for cutting plates of lead-acid batteries.

OLIVEIRA, Wellington Cordeiro. 20 August 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-08-20T13:53:22Z No. of bitstreams: 1 WELLINGTON CORDEIRO OLIVEIRA - DISSERTAÇÃO (PPGEM) 2018.pdf: 8813868 bytes, checksum: a538ae4b12c154e17d31068945d4febb (MD5) / Made available in DSpace on 2018-08-20T13:53:22Z (GMT). No. of bitstreams: 1 WELLINGTON CORDEIRO OLIVEIRA - DISSERTAÇÃO (PPGEM) 2018.pdf: 8813868 bytes, checksum: a538ae4b12c154e17d31068945d4febb (MD5) Previous issue date: 2018-04-06 / Os aços ferramenta têm uma importante participação no mercado mundial no que se refere a engenharia. São usados na indústria metal-mecânica como ferramentas de corte, moldes, punções, entre outras aplicações. Devido a sua grande importância, é imprescindível discutir a relação entre a microestrutura e as propriedades mecânicas, devido ser uma prática comum na indústria especificar os tratamentos térmicos com base principalmente na dureza final do material, sem considerar que para um mesmo valor de dureza um aço ferramenta pode apresentar diferentes propriedades mecânicas, isto dependendo do ciclo de tratamento térmico aplicado. Logo, a seleção do tratamento térmico é um aspecto tecnológico relevante no desempenho destes aços. Tendo em vista a vasta possibilidade de propriedades mecânicas obtidas (tenacidade a fratura) com diferentes tratamentos térmicos, esse trabalho teve como objetivo especificar um aço ferramenta nacional e um conjunto de parâmetros de tratamento térmico que possibilite a utilização deste material como forma de substituição de um outro aço importado utilizado na confecção de lâminas de corte usadas no processamento de placas de chumbo. O aço selecionado para o desenvolvimento deste trabalho foi o aço AISI D6, a seleção desse aço foi feita tomando-se como base as características obtidas através de análises realizadas em campo e de microdureza e microestrutura das lâminas de corte já existentes no processo confeccionadas com aço importado. Com o aço selecionado em mãos, aplicou-se dois tratamentos térmicos diferentes de têmpera e revenido (um proposto pelo fabricante e outro proposto pelo trabalho em execução), onde avaliou-se o efeito dos tratamentos térmicos sobre as propriedades mecânicas e microestrutural do material. Através da análise dos resultados da relação entre dureza e tenacidade, constatou-se que para os dois tratamentos térmicos aplicados, não houve variações significativas das propriedades mecânicas do material, e que os dois tratamentos apresentaram resultados satisfatórios. O aço ferramenta nacional especificado apresentou-se como alternativa para substituição do aço importado utilizado atualmente. Testes obtidos em campo com a lâmina fabricada com o aço nacional especificado nesse estudo e que recebeu o tratamento térmico proposto pelo fabricante (FAB), corroboraram com a análise das propriedades, visto que se constatou aumento do tempo de vida de corte em mais de 30%. / The tool steels have an important participation in the world market with regard to engineering. They are used in the metal-mechanic industry as cutting tools, molds, punches, among other applications. Because of its great importance, it is essential to discuss the relationship between the microstructure and the mechanical properties, since it is a common practice in industry to specify thermal treatments based mainly on the final hardness of the material, without considering that for a same hardness value a steel tool may have different mechanical properties, depending on the heat treatment cycle applied. Therefore, the selection of heat treatment is a relevant technological aspect in the performance of these steels. Considering the wide possibility of mechanical properties obtained (fracture toughness) with different thermal treatments, this work had the objective of specifying a national tool steel and a set of thermal treatment parameters that allow the use of this material as a substitute for a another imported steel used in the manufacture of cutting blades used in the processing of lead plates. The steel selected for the development of this work was AISI D6 steel, the selection of this steel was made taking as a base the characteristics obtained through field analysis and microhardness and microstructure of the cutting blades already in the process made with steel imported. With the selected steel in hand, two different tempering and tempering treatments were applied (one proposed by the manufacturer and another proposed by the work in progress), where the effect of the thermal treatments on the mechanical and microstructural properties of the material was evaluated. By analyzing the results of the relationship between hardness and toughness, it was found that for the two thermal treatments applied, there were no significant variations of the mechanical properties of the material, and that both treatments presented satisfactory results. The specified national steel tool was presented as an alternative to replace the currently used imported steel. Field tests with the blade manufactured with the national steel specified in this study and that received the thermal treatment proposed by the manufacturer (FAB), corroborated with the analysis of the properties, as it was observed an increase in the cutting life time in more than 30 %.

Page generated in 0.118 seconds