• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organisation à longue distance par un réseau de dislocations faiblement enterré de nanostructures de semiconducteurs III-V auto-assemblées sur substrat d'arséniure de gallium

Coelho, José 30 November 2004 (has links) (PDF)
Les nanostructures auto-assemblées sont particulièrement intéressantes pour des applications en opto-électronique et en photonique, notamment sur substrat de GaAs. Néanmoins, leur répartition spatiale à longue distance est aléatoire, leur densité est difficile à contrôler, leur distribution en taille peut être large et leurs formes peuvent êtres différentes. En palliant ces limitations, on devrait pouvoir améliorer les performances de dispositifs existants ou d'en fabriquer de nouveaux. Ce travail étudie la possibilité d'organiser à longue distance des nanostructures auto-assemblées sur substrat de GaAs, grâce aux champs élastiques produits en surface par des réseaux de dislocations (RDs) périodiques faiblement enterrés. Ces RDs se forment à l'interface cristalline entre une fine couche de GaAs et un substrat de GaAs (joints par <>) pour accommoder des désorientations entre leurs plans cristallins. Nous avons montré par l'intermédiaire d'une étude de microscopie électronique en transmission que les désorientations peuvent être choisies de sorte que les dislocations forment un réseau hexagonal périodique présentant des caractéristiques favorables à l'organisation bidimensionnelle à longue distance de nanostructures. Nous avons démontré expérimentalement une telle organisation pour des nanostructures auto-assemblées de GaAs et d'InGaAs.
2

Auto-organisation de nano-structures par des réseaux de dislocations enterrées

Leroy, Fabien 29 October 2003 (has links) (PDF)
L'utilisation de nano-structures dans des dispositifs optiques ou électroniques est pressentie comme une solution aux limites des technologies micro-électroniques actuelles. Mais l'utilisation des propriétés physiques de ces nano-structures présuppose un contrôle collectif de la taille de la densité de ces objets. Ce travail étudie la possibilité d'organisation contrôlée de nano-structures par des champs élastiques périodiques. Ces champs élastiques sont induits par des réseaux de dislocations enterrés, créés par collage moléculaire Si/Si. Nous avons montré que l'organisation directe par épitaxie des nano-structures n'est pas possible, mais qu'en utilisant une gravure chimique sensible aux champs élastiques, il était possible de définir une surface structurée à l'échelle nanométrique de manière bien contrôlée. Ce nouveau type de surface a ensuite été utilisé comme gabarit pour la croissance de nano-structures de germanium, ce qui a montré son efficacité en termes d'organisation.
3

REALISATION PAR ADHESION MOLECULAIRE D'UN SUBSTRAT INDUISANT L'AUTO-ORGANISATION LATERALE ET CONTROLEE DU DEPOT DE NANOSTRUCTURES

Fournel, Frank 18 June 2001 (has links) (PDF)
Les nanostructures de semiconducteurs sont des objets très intéressants pour de nombreuses applications en microélectronique ou en optoélectronique. Néanmoins, pour pouvoir les utili-ser, il est nécessaire de contrôler leur taille, leur densité et leur répartition spatiale. C'est pour-quoi de nombreux travaux de recherche ont été consacrés ces dernières années à la maîtrise de ces paramètres. La majorité des études porte sur la mise au point d'une méthode de croissance collective auto-organisée des nanostructures. Dans notre travail, nous avons choisi d'élaborer un substrat fonctionnel apte à provoquer l'auto-organisation latérale des nanostructures. Le moteur de l'organisation est le champ de contraintes induit en surface par un réseau de dislo-cations enterrées, obtenues par le collage et le transfert d'un film ultra-mince de silicium sur une plaque de silicium. Pour ce faire, nous avons mis au point des méthodes originales de contrôle des angles de collage. En menant de front procédé de réalisation et études structura-les, nous avons démontré que ces substrats organisent latéralement le dépôt de boîtes quanti-ques de silicium. Ces substrats pourraient donc être utilisés pour fabriquer de nouveaux com-posants pour la microélectronique ou l'optoélectronique tels que par exemple des nouveaux types de mémoires non volatiles.
4

Nanostructuration de surface de plaques de silicium (001) par révélation d'un réseau de dislocations enterrées pour l'auto-organisation à longue distance de nanostructures

Bavard, Alexis 23 October 2007 (has links) (PDF)
Afin de poursuivre la tendance de réduction des dimensions des dispositifs optiques ou électroniques, les nanostructures sont pressenties comme une solution aux limites des technologies micro-électroniques actuelles. Néanmoins, leur exploitation n'est possible que si leur taille, leur densité et leur positionnement latéral sont précisément contrôlés. Pour un gain de temps, ces nano-objets sont réalisés par croissance collective, et l'ordre latéral n'apparaît en général que si la surface est préalablement préparée. Dans ce contexte, nous avons développé un substrat nanostructuré par la révélation d'un réseau régulier bidimensionnel de dislocations enterrées obtenu lors d'un collage par adhésion moléculaire de plaques de silicium (001). L'utilisation de gravure chimique préférentielle a été optimisée pour révéler les lignes de dislocations formant en surface un réseau carré de nano-plots de silicium séparés par des nano-tranchées plus ou moins profondes. Ce type de surface a été testé pour induire un ordre latéral d'îlots de Ge et de nanostructures métalliques (Ni, Au, Ag). Nous avons montré que l'auto-organisation de ces nanostructures n'était possible que si la barrière énergétique induite par les profondeurs de tranchées était suffisamment grande pour bloquer les effets cinétiques. Dans ces conditions, les îlots ordonnés de Ge ont été analysés par des techniques de rayons X et les nanostructures métalliques par des mesures de résonance plasmon.

Page generated in 0.112 seconds