• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 51
  • 6
  • 1
  • Tagged with
  • 124
  • 124
  • 48
  • 37
  • 32
  • 28
  • 28
  • 21
  • 20
  • 20
  • 19
  • 19
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Influence d'une lombalgie expérimentale sur le contrôle central des muscles du dos

Rohel, Antoine 27 January 2024 (has links)
Introduction : La lombalgie modifie le contrôle moteur de la colonne vertébrale. Ces modifications pourraient être expliquées par une plasticité centrale induite par la douleur. Bien qu'il soit connu que la douleur impacte le fonctionnement du cortex moteur primaire, son influence sur les autres systèmes moteurs impliqués dans le contrôle du dos reste peu documentée. L'objectif de ce mémoire était de déterminer l'impact d'un paradigme de douleur lombaire expérimentale sur les différents réseaux neuronaux contrôlant les muscles du dos. Méthode : Trente participants sans atteinte ont été recrutés et répartis en deux groupes : Douleur (capsaïcine+chaleur; n=15) et Contrôle (chaleur seule; n=15)). Différents réseaux neuronaux ont été testés en évaluant les réponses des muscles lumbar erector spinae (LES) avant, pendant et après la douleur. La stimulation magnétique transcrânienne a évalué l'excitabilité corticospinale (potentiel évoqué moteur - MEP) et intracorticale par des stimulations simples et pairées, respectivement. La stimulation vestibulaire électrique (EVS) a évalué l'excitabilité vestibulospinale (VMEP) et le réflexe d'étirement a évalué l'excitabilité spinale (R1) et supraspinale (R2). Les rapports MEP/R1 et VMEP/R1 ont été calculés pour mesurer l'excitabilité corticale et du tronc cérébral. Résultats : Après la disparition de la douleur, l'amplitude de R1 était diminuée pour le groupe Douleur (p=0.008), augmentée pour le groupe Contrôle (interaction Groupe x Temps ; p<0.001) et une différence significative entre les groupes était présente (p<0,0001). Cette diminution d'amplitude de R1 après la douleur était accompagnée d'une augmentation du rapport MEP/R1 (p=0.021). Aucun changement n'était présent pendant la douleur (p>0.05). Conclusion : La diminution d'amplitude de R1 associée à l'augmentation du rapport MEP/R1 après que la douleur ait disparu suggère une modulation opposée des réseaux spinaux et corticaux et reflète la présence d'effets consécutifs à la douleur sur les circuits neuronaux moteurs. D'autres études sont nécessaires pour confirmer ces résultats, notamment chez les populations cliniques. / Introduction: Low back pain modifies spine motor control. These changes could be explained by pain-induced central plasticity. Although it is known that pain impacts the function of the primary motor cortex, its influence on the other motor systems involved in motor control of the spine remains barely studied. The objective of this master's thesis was to determine the impact of an experimental low back pain paradigm on the different neural networks involved in the control of the back muscles. Method: Thirty healthy subjects were recruited and divided into two groups pain (capsaicin + heat - n=15) and Control (heat alone - n=15)). Different neural networks were tested by evaluating the responses of the lumbar erector spinae (LES) muscles before, during and after pain. Transcranial magnetic stimulation assessed corticospinal (motor evoked potential-MEP) and intracortical excitability using single and paired stimulations, respectively. Electrical vestibular stimulation (EVS) assessed vestibulospinal excitability (VMEP) and stretch reflex assessed spinal (R1) and supraspinal (R2) excitability. MEP/R1 and VMEP/R1 ratios were calculated to measure cortical and brainstem excitability. Results: After the disappearance of pain, the amplitude of R1 was decreased for the Pain group (p=0.008) and increased for the Control group (Group x Time interaction; p<0.001) and a significant difference between the groups was present (p<0.0001). This decrease in R1 amplitude after pain was accompanied by an increase in the MEP/R1 ratio (p=0.021). No change was present during pain (p>0.05). Conclusion: The decrease in R1 amplitude associated with the increase in the MEP/R1 ratio after pain disappeared suggests an opposite modulation of spinal and cortical networks and reflects the presence of pain after effect on motor neural circuits. Further studies, including clinical studies, are needed to confirm these findings, especially in clinical populations.
12

Simulation et inférence de réseaux de neurones à l’aide d’intelligence artificielle

Bahdine, Mohamed 27 January 2024 (has links)
La représentation par réseau est un outil puissant pour la modélisation des systèmes dynamiques complexes. Elle est notamment utilisée en neurosciences pour étudier le cerveau. Cependant, extraire un connectome, soit la liste des neurones et des connexions qui les relient, demeure un défi important pour des cerveaux de plusieurs milliers de neurones. C’est le cas du cerveau de la larve du poisson-zèbre qui contient près d’une centaine de milliers de neurones. Puisque les synapses ne peuvent être directement observées, les connexions entre neurones doivent plutôt être inférées. Plusieurs méthodes classiques, dites d’inférence fonctionnelle, issues des statistiques et de la théorie de l’information, prédisent la connectivité à partir des séries temporelles qui décrivent l’activité des neurones. Plus récemment, des avancées en intelligence artificielle ont ouvert la voie à de nouvelles méthodes d’inférence. L’objectif du projet de maîtrise exposé dans ce mémoire est de comparer la performance des méthodes de l’intelligence artificielle à celle des méthodes bien établies. Puisque la connectivité réelle est nécessaire pour une telle comparaison, un simulateur de réseau de neurones est utilisé pour générer des séries temporelles d’activité à partir de connectivités réelles extraites de vidéos d’activité. Il est montré que la calibration d’un tel simulateur, dans le but d’obtenir de l’activité similaire à celle des poissons-zèbres, n’est pas une tâche triviale. Une approche d’apprentissage profond est donc conçue pour prédire, à partir de métriques d’activité globale, les paramètres de simulation idéaux. Il est ensuite montré, sur 86% des simulations générées, qu’un modèle de réseau de neurones artificiels à convolution performe significativement mieux que les autres méthodes d’inférence. Cependant, lorsqu’un entraînement supervisé est impossible, la méthode classique de transfert d’entropie performe mieux qu’un modèle d’apprentissage profond nonsupervisé sur 78% des simulations générées. / Complex network analysis is a powerful tool for the study of dynamical systems. It is often used in neuroscience to study the brain. However, extraction of complete connectomes, i.e. , the list of all neurons and connections, is still a challenge for large brains. This is the case for the brain of the zebrafish which contains almost a hundred thousand neurons. Since direct observation of synapses is still intractable for a brain of this size, connections between neurons must be inferred from their activity. It is indeed possible to extract time series of activity for all neurons, by making them fluorescent upon activation through genetic engineering and by leveraging the zebrafish’s transparency during the larval stage. Then, so-called methods of functional inference, based on information theory, can be used to predict the connectivity of neurons from time series of their activity. Recent breakthroughs in artificial intelligence have opened the door to new methods of inference. The goal of the project described in this thesis is to compare the performance of such new methods to the performance of well-established ones. Since ground truth of connectivity must be known for comparison, a simulator is used to generate synthetic time series of activity from known connectivity. It is shown that the tuning of such a simulator, in order to generate realistic data, is not an easy task. Therefore, a deep learning approach is proposed to predict optimal simulator parameters by analysis global dynamical metrics. Using the generated time series, it is shown that a convolutional neural network performs significantly better than well-established methods on 86% of simulations. However, in cases where supervised learning is impossible, the zebrafish’s case being an example, the classical method of Transfer Entropy performs better than an unsupervised deep learning model on 78% of simulations.
13

Statistical guarantees for deep generative models : a PAC-Bayesian approach

Mbacke, Sokhna Diarra 25 November 2024 (has links)
Le sujet de cette thèse est l'analyse théorique des modèles génératifs profonds. Les modèles génératifs profonds sont des réseaux de neurones dont le but est d'apprendre une distribution de probabilité à partir d'un échantillon fini. Malgré leurs performances empiriques impressionnantes, les modèles génératifs profonds sont difficiles à analyser et il est difficile d'obtenir des garanties formelles sur leur comportement. Pour résoudre ce problème, nous utilisons la théorie PAC-Bayésienne, un outil fondamental en théorie de l'apprentissage statistique offrant des bornes de généralisation avec haute probabilité pour les modèles d'apprentissage automatique. Nous étendons la théorie PAC-Bayésienne et développons diverses bornes et techniques adaptées à l'étude des modèles génératifs profonds. Tout d'abord, nous étudions les réseaux adversariaux génératifs et obtenons des bornes supérieures quantitatives sur l'erreur de généralisation de la perte du critique, ainsi que des bornes supérieures sur la distance entre la distribution génératrice de données et la distribution apprise par le modèle. Ensuite, nous développons des garanties statistiques pour les autoencodeurs variationnels (VAEs). Nous commençons par dériver la première borne PAC-Bayésienne pour les distributions postérieures conditionnelles, et montrons que ces bornes peuvent être utilisées pour déduire des garanties de généralisation pour la perte de reconstruction du VAE. Nous dérivons également les premières bornes supérieures sur la distance entre la distribution génératrice de données et la distribution apprise par le modèle génératif du VAE. Enfin, nous étendons nos résultats aux modèles de débruitage par diffusion et dérivons une borne supérieure empirique pour la distribution apprise par un modèle de diffusion. / The subject of this work is the theoretical analysis of deep generative models. Deep generative models are neural networks designed to learn a probability distribution using a finite sample. Despite their impressive empirical performance, deep generative models are notoriously hard to analyze and it is difficult to obtain formal guarantees on their behaviour. To address this problem, we employ PAC-Bayesian theory, a fundamental tool in statistical learning theory offering high-probability generalization bounds for machine learning models. We extend PAC-Bayesian theory and develop various bounds and techniques tailored to the study of deep generative models. First, we study generative adversarial networks and derive quantitative upper bounds on the generalization error of the negative critic loss, as well as upper bounds on the distance between the data-generating distribution and the distribution learned by the model. Then, we develop statistical guarantees for Variational Autoencoders (VAEs). We start by deriving the first PAC-Bayes bounds for conditional posterior distributions, and show that these bounds can be used to derive generalization guarantees for the VAE's reconstruction loss. We also derive the first upper bounds on the distance between the data-generating distribution and the distribution learned by the VAE's generative model. Finally, we extend our results to denoising diffusion models and derive an empirical upper bound for the distribution learned by a diffusion model.
14

Brain-inspired computing leveraging the transient non-linear dynamics of magnetic nano-oscillators / Calcul bio-inspiré utilisant la dynamique non-linéaire transitoire d’oscillateurs magnétiques nanométriques

Riou, Mathieu 23 January 2019 (has links)
L’objectif de cette thèse est la réalisation expérimentale de calcul bio-inspiré en utilisant la dynamique transitoire d’oscillateurs magnétique nanométriques.Pour bien des tâches telle que la reconnaissance vocale, le cerveau fonctionne bien plus efficacement en terme d’énergie qu’un ordinateur classique. Le développement de puces neuro-inspirées offre donc la perspective de surmonter les limitations des processeurs actuels et de gagner plusieurs ordres de grandeurs sur la consommation énergétique du traitement de données. L’efficacité du cerveau à traiter des données est due à son architecture, qui est particulièrement adaptée à la reconnaissance de motifs. Les briques de base de cette architecture sont les neurones biologiques. Ceux-ci peuvent être vus comme des oscillateurs non linéaires qui interagissent et génèrent des cascades spatiales d’activations en réponse à une excitation. Cependant le cerveau comprend cent milliards de neurones et le développement d’une puce neuro-inspiré requerrait des oscillateurs de très petite dimension. Les oscillateurs à transfert de spin (STNO) sont de taille nanométrique, ont une réponse rapide (de l’ordre de la nanoseconde), sont fortement non-linéaires et leur réponse dépendante du couple de transfert de spin est aisément ajustable (par exemple par l’application d’un courant continu ou d’un champ magnétique). Ils fonctionnent à température ambiante, ont un très faible bruit thermique, et sont compatible avec les technologies CMOS. Ces caractéristiques en font d’excellents candidats pour la réalisation de réseaux artificiels de neurones compatibles avec un ordinateur classique.Dans cette thèse, nous avons utilisé un unique STNO pour générer le comportement d’un réseau de neurones. Ainsi l’oscillateur joue à tour de rôle chaque neurone. Une cascade temporelle remplace donc la cascade spatiale d’un réseau de neurones biologiques. En particulier nous avons utilisé la relaxation et la dépendance non-linéaire de l’amplitude des oscillations afin de réaliser du calcul neuromorphique. L’un des résultats principaux de cette thèse est la réalisation de reconnaissance vocale (reconnaissance de chiffres dits par 5 locuteurs différents) en obtenant un taux de reconnaissance à l’état de l’art de 99.6%. Nous avons pu montrer que les performances de la reconnaissance sont étroitement dépendantes des propriétés physiques du STNO tel que l’évolution de la largeur de raie, la puissance d’émission, ou la fréquence d’émission. Nous avons donc optimisé les conditions expérimentales (champs magnétiques et courant continu appliqués, fréquence du signal à traiter) afin de pouvoir utiliser au mieux les propriétés physiques du STNO pour la reconnaissance.  Les signaux vocaux requièrent d’être transformés du domaine temporel au domaine fréquentiel, avant de pouvoir être traités, et cette étape est réalisée numériquement en amont de l’expérience. Nous avons étudié l’influence de différents prétraitements sur la reconnaissance et mis en évidence le rôle majeur de la non-linéarité de ces derniers. Enfin, afin de pouvoir traiter des problèmes requérant de la mémoire, tel que par exemple des signaux sous forme de séquences temporelles, nous avons mesuré la mémoire que possède intrinsèquement un STNO, du fait de sa relaxation. Nous avons aussi augmenté cette mémoire à l’aide d’une boucle à retard. Ce dispositif a permis d’accroître la plage de mémoire de quelques centaines de nanosecondes à plus d’une dizaine de microsecondes. L’ajout de cette mémoire extrinsèque a permis de supprimer jusqu’à 99% des erreurs sur une tâche de reconnaissance de motifs temporels (reconnaissance de signaux sinusoïdaux et carrés). / This thesis studies experimentally the transient dynamics of magnetic nano-oscillators for brain-inspired computing.For pattern recognition tasks such as speech or visual recognition, the brain is much more energy efficient than classical computers. Developing brain-inspired chips opens the path to overcome the limitations of present processors and to win several orders of magnitude in the energy consumption of data processing. The efficiency of the brain originates from its architecture particularly well adapted for pattern recognition. The building blocks of this architecture are the biological neurons, which can be seen as interacting non-linear oscillators generating spatial chain reactions of activations. Nevertheless, the brain has one hundred billion neurons and a brain-inspired chip would require extremely small dimension oscillators. The spin-transfer torque oscillators (STNO) have nanometric size, they are fast (nanosecond time-scales), highly non-linear and their spin-torque dependent response is easily tunable (for instance by applying an external magnetic field or a d.c. current). They work at room temperature, they have a low thermal noise and they are compatible with CMOS technologies. Because of these features, they are excellent candidates for building hardware neural networks, which are compatible with the standard computers.In this thesis, we used a single STNO to emulate the behavior of a whole neural network. In this time multiplexed approach, the oscillator emulates sequentially each neuron and a temporal chain reaction replace the spatial chain reaction of a biological neural network. In particular, we used the relaxation and the non-linear dependence of the oscillation amplitude with the applied current to perform neuromorphic computing. One of the main results of this thesis is the demonstration of speech recognition (digits said by different speakers) with a state-of-the-art recognition rate of 99.6%. We show that the recognition performance is highly dependent on the physical properties of the STNO, such as the linewidth, the emission power or the frequency. We thus optimized the experimental bias conditions (external applied magnetic field, d.c. current and rate of the input) in order to leverage adequately the physical properties of the STNO for recognition. Voice waveforms require a time-to-frequency transformation before being processed, and this step is performed numerically before the experiment. We studied the influence of different time-to-frequency transformations on the final recognition rate, shading light on the critical role of their non-linear behavior. Finally, in order to solve problems requiring memory, such as temporal sequence analysis, we measured the intrinsic memory of a STNO, which comes from the relaxation of the oscillation amplitude. We also increased this memory, using a delayed feedback loop. This feedback improved the range of memory from a few hundreds of nanoseconds to more than ten microseconds. This feedback memory allows suppressing up to 99% of the errors on a temporal pattern recognition task (discrimination of sine and square waveforms).
15

Representation learning for few-shot image classification

Afrasiyabi, Arman 13 December 2023 (has links)
En tant qu'algorithmes d'apprentissage automatique à la pointe de la technologie, les réseaux de neurones profonds nécessitent de nombreux exemples pour bien fonctionner sur une tâche d'apprentissage. La collecte et l'annotation de multiples échantillons nécessitent un travail humain important et c'est même impossible dans la plupart des problèmes du monde réel tel que l'analyse de données biomédicales. Dans le contexte de la vision par ordinateur, la classification d'images à quelques plans vise à saisir la capacité humaine à apprendre de nouveaux concepts avec peu de supervision. À cet égard, l'idée générale est de transférer les connaissances des catégories de base avec plus d'encadrement vers des classes nouvelles avec peu d'exemples. En particulier, les approches actuelles d'apprentissage à quelques coups pré entraînent un modèle sur les classes de base disponible pour généraliser aux nouvelles classes, peut-être avec un réglage fin. Cependant, la généralisation du modèle actuel est limitée en raison de certaines hypothèses lors de la préformation et de restrictions lors de l'étape de mise au point. Cette thèse vise à assouplir trois hypothèses des modèles d'apprentissage à quelques plans actuels et nous proposons un apprentissage de représentation pour la classification d'images à quelques plans. Tout d'abord, le gel d'un modèle préformé semble inévitable dans la phase de réglage fin en raison de la forte possibilité de surentraînement sur quelques exemples. Malheureusement, l'apprentissage par transfert avec une hypothèse de modèle gelé limite la capacité du modèle puisque le modèle n'est pas mis à jour avec aucune connaissance des nouvelles classes. Contrairement au gel d'un modèle, nous proposons un alignement associatif qui permet d'affiner et de mettre à jour le réseau sur de nouvelles catégories. Plus précisément, nous présentons deux stratégies qui détectent et alignent les nouvelles classes sur les catégories de base hautement liées. Alors que la première stratégie pousse la distribution des nouvelles classes au centre de leurs catégories de base associées, la seconde stratégie effectue une correspondance de distribution à l'aide d'un algorithme d'entraînement contradictoire. Dans l'ensemble, notre alignement associatif vise à éviter le surentraînement et à augmenter la capacité du modèle en affinant le modèle à l'aide de nouveaux exemples et d'échantillons de base associés. Deuxièmement, les approches actuelles d'apprentissage à quelques coups effectuent le transfert de connaissances vers de nouvelles classes distinctes sous l'hypothèse uni modale, où tous les exemples d'une seule classe sont représentés par un seul cluster. Au lieu de cela, nous proposons une approche d'apprentissage de l'espace des caractéristiques basée sur le mélange (MixtFSL) pour déduire une représentation multimodale. Alors qu'un précédent travail basé sur un modèle de mélange d'Allen et al. citeallen2019infinite est basé sur une méthode de clusters classique de manière non différentielle, notre MixtFSL est un nouveau modèle multimodale de bout en bout et entièrement différentielle. MixtFSL capture la multimodale des classes de base sans aucun algorithme de clusters classique à l'aide d'un cadre en deux étapes. La première phase s'appeler formation initiale et vise à apprendre la représentation préliminaire du mélange avec une paire de fonctions de perte. Ensuite, l'étape suivante progressive, la deuxième étape, stabilise la formation avec un cadre de formation de type enseignant-élève utilisant une fonction de perte unique. Troisièmement, contrairement aux techniques actuelles à quelques prises de vue consistant à représenter chaque exemple d'entrée avec une seule entité à la fin du réseau, nous proposons un extracteur d'entités d'ensemble et des ensembles d'entités correspondantes qui assouplissent l'hypothèse typique basée sur une seule entité en raisonnant sur des ensembles d'entités. Ici, nous émettons l'hypothèse que l'hypothèse d'une seule caractéristique est problématique dans la classification d'images à quelques prises de vue puisque les nouvelles classes sont différentes des classes de base préformées. À cette fin, nous proposons nouvel extracteur de caractéristiques d'ensemble d'apprentissage profond basé sur les réseaux de neurones hybrides convolution-attention. De plus, nous suggérons trois métriques ensemble à ensemble non paramétriques pour séduire la classe de l'entrée donnée. Cette thèse utilise plusieurs indicateurs standards publiés dans la littérature sur l'apprentissage en peu d'exemples et l'ossature de réseau pour évaluer les méthodes que nous proposons. / As the current state-of-the-art machine learning algorithms, deep neural networks require many examples to perform well on a learning task. Gathering and annotating many samples requires significant human labor, and it is even impossible in most real-world problems such as biomedical data analysis. Under the computer vision context, few-shot image classification aims at grasping the human ability to learn new concepts with little supervision. In this respect, the general idea is to transfer knowledge from base categories with more supervision to novel classes with few examples. In particular, the current few-shot learning approaches pre-train a model on available base classes to generalize to the novel classes, perhaps with fine-tuning. However, the current model's generalization is limited because of some assumptions in the pre-training and restrictions in the fine-tuning stage. This thesis aims to relax three assumptions of the current few-shot learning models, and we propose representation learning for few-shot image classification. First, freezing a pre-trained model looks inevitable in the fine-tuning stage due to the high possibility of overfitting on a few examples. Unfortunately, transfer learning with a frozen model assumption limits the model capacity since the model is not updated with any knowledge of the novel classes. In contrast to freezing a model, we propose associative alignment that enables fine-tuning and updating the network on novel categories. Specifically, we present two strategies that detect and align the novel classes to the highly related base categories. While the first strategy pushes the distribution of the novel classes to the center of their related base categories, the second strategy performs distribution matching using an adversarial training algorithm. Overall, our associative alignment aims to prevent overfitting and increase the model capacity by refining the model using novel examples and related base samples. Second, the current few-shot learning approaches perform transferring knowledge to distinctive novel classes under the uni-modal assumption, where all the examples of a single class are represented with a single cluster. Instead, we propose a mixture-based feature space learning (MixtFSL) approach to infer a multi-modal representation. While a previous mixture-model-based work of Allen et al. [1] is based on a classical clustering method in a non-differentiable manner, our MixtFSL is a new end-to-end multi-modal and fully differentiable model. MixtFSL captures the multi-modality of base classes without any classical clustering algorithm using a two-stage framework. The first phase is called initial training and aims to learn preliminary mixture representation with a pair of loss functions. Then, the progressive following stage, the second stage, stabilizes the training with a teacher-student kind of training framework using a single loss function. Third, unlike the current few-shot techniques of representing each input example with a single feature at the end of the network, we propose a set feature extractor and matching feature sets that relax the typical single feature-based assumption by reasoning on feature sets. Here, we hypothesize that the single feature assumption is problematic in few-shot image classification since the novel classes are different from pre-trained base classes. To this end, we propose a new deep learning set feature extractor based on the hybrid convolution-attention neural networks. Additionally, we offer three non-parametric set-to-set metrics to infer the class of the given input. This thesis employs several standard benchmarks of few-shot learning literature and network backbones to evaluate our proposed methods.
16

Modélisation hydrologique hybride : réseau de neurones - modèle conceptuel

Yonaba, Harouna 16 April 2018 (has links)
En hydrologie, la simulation de la transformation de la pluie en débit dans les rivières constitue un axe de recherche dynamique. À la mise en oeuvre des nouveaux modèles, il faut ajouter les tentatives d'améliorer ceux existant grâce à la possibilité qu'offrent des nouveaux outils d'acquisition de données et à la puissance de calcul des ordinateurs toujours croissante. La puissance de calcul des nouveaux ordinateurs rend utilisable des algorithmes autrefois difficiles à mettre en oeuvre comme les réseaux de neurones (RN). Les réseaux de neurones ont connu un essor dans la modélisation hydrologique dans les années 1990 où ils ont été essentiellement utilisés dans la mise en oeuvre de modèles pluie-débit. Dans cette thèse l'on cherche à remplacer le module BV3C (bilan vertical 3 couches) du modèle distribué HYDROTEL par un ensemble de réseaux de neurones. BV3C divise le sol en trois couches où il simule les teneurs en eau et les débits sortant de chacune des couches. Cette démarche a pour but d'explorer l'opportunité de remplacer des modules de modèles complexes par des réseaux de neurones qui, une fois optimisés, constituent des outils de calculs très simples, rapides et transportables sur des supports informatiques simples. Le défi d'une telle démarche est de trouver une base de données représentative susceptible d'être utilisée par le module substitué. Dans le cas présent, des données provenant de zones hydro-climatologiques différentes ont été utilisées. Ces données sont utilisées comme entrées du module original extrait de l'ensemble du modèle HYDROTEL. Les résultats de simulation sont classés avant d'être utilisés en partie pour l'optimisation et le test des réseaux de neurones. Les réseaux mis en oeuvre sont testés sur une autre partie des données et dans un cadre opérationnel où les réseaux de neurones sont réintégrés dans le modèle. Les résultats des différents tests montrent tout d'abord que la substitution donne des résultats satisfaisants sur l'ensemble des données qui n'ont servi ni à l'optimisation, ni aux tests des réseaux de neurones. En plus, on enregistre un léger gain de temps. Les résultats sur les teneurs en eau sont nettement meilleurs. Cela s'explique par le fait que celles-ci connaissent de faibles variations dans le temps. Les variations plus importantes des débits des différentes couches rendent plus difficile leur modélisation mais les résultats obtenus rendent la substitution envisageable aussi bien dans le présent cas que dans des modules plus complexes.
17

Deep learning for object detection in robotic grasping contexts

Mercier, Jean-Philippe 02 February 2024 (has links)
Dans la dernière décennie, les approches basées sur les réseaux de neurones convolutionnels sont devenus les standards pour la plupart des tâches en vision numérique. Alors qu'une grande partie des méthodes classiques de vision étaient basées sur des règles et algorithmes, les réseaux de neurones sont optimisés directement à partir de données d'entraînement qui sont étiquetées pour la tâche voulue. En pratique, il peut être difficile d'obtenir une quantité su sante de données d'entraînement ou d'interpréter les prédictions faites par les réseaux. Également, le processus d'entraînement doit être recommencé pour chaque nouvelle tâche ou ensemble d'objets. Au final, bien que très performantes, les solutions basées sur des réseaux de neurones peuvent être difficiles à mettre en place. Dans cette thèse, nous proposons des stratégies visant à contourner ou solutionner en partie ces limitations en contexte de détection d'instances d'objets. Premièrement, nous proposons d'utiliser une approche en cascade consistant à utiliser un réseau de neurone comme pré-filtrage d'une méthode standard de "template matching". Cette façon de faire nous permet d'améliorer les performances de la méthode de "template matching" tout en gardant son interprétabilité. Deuxièmement, nous proposons une autre approche en cascade. Dans ce cas, nous proposons d'utiliser un réseau faiblement supervisé pour générer des images de probabilité afin d'inférer la position de chaque objet. Cela permet de simplifier le processus d'entraînement et diminuer le nombre d'images d'entraînement nécessaires pour obtenir de bonnes performances. Finalement, nous proposons une architecture de réseau de neurones ainsi qu'une procédure d'entraînement permettant de généraliser un détecteur d'objets à des objets qui ne sont pas vus par le réseau lors de l'entraînement. Notre approche supprime donc la nécessité de réentraîner le réseau de neurones pour chaque nouvel objet. / In the last decade, deep convolutional neural networks became a standard for computer vision applications. As opposed to classical methods which are based on rules and hand-designed features, neural networks are optimized and learned directly from a set of labeled training data specific for a given task. In practice, both obtaining sufficient labeled training data and interpreting network outputs can be problematic. Additionnally, a neural network has to be retrained for new tasks or new sets of objects. Overall, while they perform really well, deployment of deep neural network approaches can be challenging. In this thesis, we propose strategies aiming at solving or getting around these limitations for object detection. First, we propose a cascade approach in which a neural network is used as a prefilter to a template matching approach, allowing an increased performance while keeping the interpretability of the matching method. Secondly, we propose another cascade approach in which a weakly-supervised network generates object-specific heatmaps that can be used to infer their position in an image. This approach simplifies the training process and decreases the number of required training images to get state-of-the-art performances. Finally, we propose a neural network architecture and a training procedure allowing detection of objects that were not seen during training, thus removing the need to retrain networks for new objects.
18

Impacts des rythmes du sommeil sur la connectivité fonctionnelle et effets des changements ioniques sur la synchronisation neuronale et la connectivité fonctionnelle

Seigneur, Josée 19 April 2018 (has links)
La synchronisation neuronale est inhérente au cerveau, ce qui permet aux neurones de se regrouper en réseau et de communiquer. Les oscillations indissociables aux états de vigilance tels le sommeil à ondes lentes, le sommeil paradoxal et l’éveil, mais aussi à l’état pathologique tel l’épilepsie émergent de la synchronisation d’un groupe de neurones. Plusieurs interactions neuronales influencent la synchronisation, soit la transmission chimique ou électrique, les variations ioniques et les interactions éphaptiques. Du point de vue cellulaire, la plasticité synaptique influence également la connectivité fonctionnelle des neurones. Dans cette thèse, le but est d’expliquer les impacts des rythmes du sommeil sur la connectivité fonctionnelle et les effets des changements ioniques sur la synchronisation neuronale et la connectivité fonctionnelle. Les états de vigilance sont impliqués dans la consolidation de la mémoire. Nous avons démontré que la présence des oscillations lentes et du patron de décharge des neurones pendant l’oscillation lente peuvent favoriser la facilitation synaptique à long terme, ce qui peut être un élément clé pour l’intégration de nouvelles connections synaptiques sous-adjacent à la consolidation de la mémoire pendant le sommeil. Au contraire, les activités synaptiques générées pendant l’éveil en présence d’acétylcholine favorise la facilitation à court-terme. Les mécanismes de passage de l’information sensorielle dans le thalamus pendant le sommeil sont inconnus. Nous avons démontré que le taux d’échec à une stimulation lemniscale est augmenté pendant les potentiels calciques et leur génération cause une diminution du calcium extracellulaire qui est suffisante pour influencer la transmission synaptique. Les potentiels calciques se produisent préférentiellement pendant le sommeil à ondes lentes, mais également sous forme de bouffées paroxystiques de potentiels d’action lors de l’épilepsie. Durant les crises épileptiques, l’activité paroxystique des neurones cause une diminution du calcium et une augmentation du potassium extracellulaire. Nous avons démontré que ces changements ioniques affectent la transmission synaptique en augmentant le taux d’échec à des réponses unitaires et en bloquant la transmission axonale d’un potentiel d’action, ce qui a pour effet de rompre la communication entre les neurones, de perturber leur synchronisation pendant les crises paroxystiques et de faciliter leur terminaison. / The neuronal synchronisation is an intrinsic phenomenon in the brain that allows neurons to be connected to the network to communicate. Oscillations inherent of the states of vigilance such as the slow-wave sleep, the REM sleep, and waking state or pathological conditions such as epilepsy emerge from the network synchronisation of a group of neurons. Several interactions influence the synchronization: the chemical or electrical transmission, the ionic variations, and the ephaptic interactions. At cellular level, the synaptic plasticity also influences the functional connectivity of neurons. In this thesis, I aim to explain the impact of sleep rhythms on the functional connectivity and the effects of ionic variations on the neuronal synchrony and the functional connectivity. States of vigilance implicated in the memory consolidation. We demonstrated that the presence of slow oscillations and the spiking pattern during slow-wave sleep favours the long-term synaptic facilitation, which could be a key element for the sleep-dependent reinforcement of synaptic efficacy contributing to memory consolidation. By contrast synaptic activities generated during waking state in a conditions of increased level acetylcholine favour short-term facilitation. Sleep allows also the brain to disrupt partially the communication with the environment. The accepted model is that the thalamus provides gating of sensory information during sleep, but the exact mechanisms of that gating are unknown. We demonstrated that the failure rate to a lemniscal stimulation is increased during the thalamic Ca2+ spike bursts and the generation of those Ca2+ spikes cause a depletion of the extracellular calcium which is sufficient to reduce the synaptic efficacy. Bursts of action potential occur preferentially during slow-wave sleep, but also in the pathological form of paroxysmal depolarization shift during the generation of cortical epileptic seizures. During seizures, the paroxysmal neuronal activity causes a decrease of extracellular Ca2+ and an increase of extracellular potassium. We demonstrated that those ionic variations affect the synaptic transmission by increasing the failure rate of unitary responses at a synapse and by blocking the axonal transmission of action potentials, which disrupts the neuronal communication between neurons, facilitating seizure termination.
19

Robust parallel-gripper grasp getection using convolutional neural networks

Gariépy, Alexandre 14 March 2024 (has links)
La saisie d’objet est une tâche fondamentale du domaine de la robotique. Des avancées dans ce domaine sont nécessaires au déploiement de robots domestiques ou pour l’automatisation des entrepôts par exemple. Par contre, seulement quelques approches sont capables d’effectuer la détection de points de saisie en temps réel. Dans cet optique, nous présentons une architecture de réseau de neurones à une seule passe nommée Réseau à Transformation Spatiale de Qualité de Saisie, ou encore Grasp Quality Spatial Transformer Network (GQ-STN) en anglais. Se basant sur le Spatial Transformer Network (STN), notre réseau produit non seulement une configuration de saisie mais il produit également une image de profondeur centrée sur cette configuration. Nous connectons notre architecture à un réseau pré-entraîné qui évalue une métrique de robustesse de saisie. Ainsi, nous pouvons entraîner efficacement notre réseau à satisfaire cette métrique de robustesse en utilisant la propagation arrière du gradient provenant du réseau d’évaluation. De plus, ceci nous permet de facilement entraîner le réseau sur des jeux de données contenant peu d’annotations, ce qui est un problème commun en saisie d’objet. Nous proposons également d’utiliser le réseau d’évaluation de robustesse pour comparer différentes approches, ce qui est plus fiable que la métrique d’évaluation par rectangle, la métrique traditionnelle. Notre GQ-STN est capable de détecter des configurations de saisie robustes sur des images de profondeur de jeu de données Dex-Net 2.0 à une précision de 92.4 % en une seule passe du réseau. Finalement, nous démontrons dans une expérience sur un montage physique que notre méthode peut proposer des configurations de saisie robustes plus souvent que les techniques précédentes par échantillonage aléatoire, tout en étant plus de 60 fois plus rapide. / Grasping is a fundamental robotic task needed for the deployment of household robots or furthering warehouse automation. However, few approaches are able to perform grasp detection in real time (frame rate). To this effect, we present Grasp Quality Spatial Transformer Network (GQ-STN), a one-shot grasp detection network. Being based on the Spatial Transformer Network (STN), it produces not only a grasp configuration, but also directly outputs a depth image centered at this configuration. By connecting our architecture to an externally-trained grasp robustness evaluation network, we can train efficiently to satisfy a robustness metric via the backpropagation of the gradient emanating from the evaluation network. This removes the difficulty of training detection networks on sparsely annotated databases, a common issue in grasping. We further propose to use this robustness classifier to compare approaches, being more reliable than the traditional rectangle metric. Our GQ-STN is able to detect robust grasps on the depth images of the Dex-Net 2.0 dataset with 92.4 % accuracy in a single pass of the network. We finally demonstrate in a physical benchmark that our method can propose robust grasps more often than previous sampling-based methods, while being more than 60 times faster.
20

Observation et modélisation de l'évaporation d'une rivière en milieu boréal

Girard, Médéric 02 February 2024 (has links)
L’objectif de ce projet de recherche est de développer un modèle d’évaporation de l’eau d’une rivière en milieu boréal. Un site expérimental sur la rivière Natashquan dans la région de la Côte-Nord au Québec a été sélectionné pour y installer une station hydrométéorologique faisant un suivi des variables environnementales locales. Cette rivière est marquante dans le paysage de la Minganie par la superficie de 15 930 km2 de son bassin versant et son débit moyen annuel de 349 m3/s. Ce puissant cours d’eau est une des dernières rivières naturelles de la Côte-Nord n’étant pas harnachée par un barrage. Une campagne constituée de 5 sorties de mesures intensives sur le terrain a été effectuée afin d’observer l’évaporation de l’eau de la rivière par la méthode des mini-lysimètres flottants. Ces derniers s’inspirent du processus derrière le bac évaporatoire de classe A pour obtenir une estimation de l’évaporation in-situ en ayant un petit bac évaporatoire portatif à la surface de l’eau de la rivière. Un modèle d’évaporation par transfert de masse a été développé avec les données récoltées et 8 fonctions de vent de la littérature ont été testées. Puis, un modèle d’évaporation par ensemble de réseaux de neurones a été retenu, car il offrait une meilleure performance que les approches classiques. Ce réseau de neurones ayant comme variables d’entrée la tension de vapeur à saturation, le rayonnement incident d’ondes longues, la vitesse du vent et la tension de vapeur de l’air, permet d’explorer une non linéarité entre les variables qui n’est pas accessible à l’approche de transfert de masse. Ce modèle met en évidence le manque de recherche sur les processus gouvernant l’évaporation fluviale dans le cadre de rivière de grande envergure et particulièrement l’évaporation des rivières du milieu boréal. / The objective of this study was to develop a river evaporation model for the boreal biome. A hydrometeorological station was installed on the bank of the Natashquan river to collect environmental data. The Natashquan river is major hydrographic component of the region with its 15 930 km2 watershed and its 349 m3/s mean annual flow. This powerful watercourse is one of the only remaining significant river that has not yet been dammed in the Côte-Nord region. Five intensive field campaigns were carried out targeting different conditions during the summers of 2018 and 2019. River water evaporation was observed using the floating minipan method. This method, inspired by the process behind the class A evaporation pan, allows small portable evaporation pans to be deployed on the water surface and to monitor in-situ evaporation in more holistic conditions. Observations were used to calibrate the wind function of a mass-transfer evaporation model and compare it with different wind functions taken from the literature. A stacked neural network was selected as the river model based on a higher performance compared to the mass transfer approach. The input variables of the network are the saturation vapour pressure, the incoming longwave radiation, the wind speed and the vapour pressure of the above air. The model allows a nonlinear combination of the selected environmental variables that is not accessible to the mass transfer equations. Therefore, the present study highlights the evident lack of research concerning fluvial evaporation in the context of rivers of considerable size, particularly in the boreal biome.

Page generated in 0.0754 seconds