• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studying the contribution of urban areas to fine sediment and associated element contents in a river bed

David, Telse 04 June 2013 (has links) (PDF)
Urban wet weather discharge impairs the receiving water and sediment quality. Among other factors, particulate matter plays a role. It increases the suspended sediment load of the receiving water and may thus enhance the clogging of the bed sediment which serves as an important river habitat. This thesis investigates how much urban areas may contribute to the fine sediment and associated element load which is retarded by the bed sediment. It is based on an extensive field study. The study area was the Bode River, a mid-sized stream in Central Germany. About 10 km upstream of the river mouth, the sampling campaign took place close to Staßfurt, a town of 20’000. During the sampling campaign, the intrusion of fine sediment into the bed sediment was captured by sediment traps. Furthermore three possible sources of this fine sediment were sampled. Within the Town of Staßfurt, we sampled urban wet weather discharge at three sites to capture urban areas. As second source naturally occurring fine sediment was considered. Therefore we took sediment cores upstream of the Town of Staßfurt. As third source, the impact of the upstream catchment was captured by taking suspended sediment samples. For all sample types, particle-bound element contents were determined to establish element patterns of the receptor and the source sites. The rationale thereby is that the element pattern at the receptor sites results from the element patterns of the sources. Consequently the contribution of the sources can be calculated by mixing models. In the study area, particulate matter from urban areas is distinct from river borne fine sediment due to elevated copper, zinc, nitrogen and phosphorus contents. We conducted an in-depth analysis of this element pattern by a cluster analysis. It revealed that the particle-bound element pattern is source specific whereby nitrogen, phosphorus and carbon are related to sewage and behave differently than most metals such as copper which mainly originate from surface runoff. The degree to which element patterns agree from site to site is limited by the variability encountered within sample sets from individual sites. Thereby the variability of the element pattern depends on the complexity of the catchment. The contribution of urban areas to fine sediment and associated elements which were captured by sediment traps was calculated by a mixing model. Based on this mixing model, about 10% of the fine sediment originate from urban areas. Thereby the impact of the Town of Staßfurt could not be detected leading to the conclusion that upstream urban areas contribute most. Because of the elevated content of e.g. copper and zinc, urban areas contribute up to 40% and thus disproportionally high to particle-associated copper and zinc load. The source apportionment of the fine sediment is little influenced by the elements considered in the mixing model. Different element patterns showed that the median contribution of urban areas ranges from 0 – 20%. This lies within the interquartile range of the initial mixing model. Another result of the measurement campaign ist that sediment traps over-estimated the anthropogenic impact because they did not resemble the surrounding bed sediment. When they were exposed, they were completely free from fine sediment and hence served as sink of suspended sediment. During the sampling campaign, one source was not directly taken into account. It was possible, though, to delineate this source by nonnegative matrix factorization. Within the Town of Staßfurt, a soda ash production site discharges into the Bode River. The nonnegative matrix factorization uncovered that the soda ash production site is a major source of particulate matter and contributes up to 30% of the fine sediment captured by the traps downstream of the Town of Staßfurt. This source dilutes most element contents as it mainly consists of carbonates. This was revealed by studying the element binding according to the BCR extraction scheme. This thesis shows that urban areas may be a major source of particulate matter and especially associated elements retarded by the bed sediment. It shows that the element contents form a viable pattern to calculate how much urban areas contribute to fine sediment by mixing models. The thesis further shows that nonnegative matrix factorization is a viable tool to delineate such a distinct source as soda ash production site. / Misch- und Regenwasserentlastungen beeinträchtigen die Qualität von Vorflutgewässern. Unter anderem gelangt Feinsediment während Entlastungsereignissen in Vorflutgewässer. Dieses erhöht die Fracht an suspendiertem Sediment und verstärkt die Kolmatierung der Gewässersohle. Damit ist das hyporheische Interstitial, das ein wichtiges Fließgewässerhabitat ist, vom Eintrag von Feinsediment betroffen. Diese Arbeit untersucht, wie sehr urbane Flächen zur Feinsedimentfracht und zur Fracht von partikulär gebundenen Elementen beitragen können, die im Bettsediment zurückgehalten werden. Sie beruht auf einer umfangreichen Messkampagne. Das Untersuchungsgebiet dafür war die Bode, ein mittelgroßer Fluss in Mitteldeutschland. Etwa 10 km flussaufwärts der Mündung fand die Messkampagne nahe der Kleinstadt Staßfurt statt. Im Rahmen dieser Messkampagne haben wir den Eintrag von Feinsediment in das Bettsediment durch Sedimentkörbe erfasst. Drei Quellen dieses Feinsediments haben wir berücksichtigt. In Staßfurt wurden eine Regen- und zwei Mischwassereinleitungen beprobt, um urbane Flächen zu erfassen. Als zweite Quelle wurde natürlich vorkommendes Feinsediment berücksichtigt. Dafür haben wir Sedimentkerne flussaufwärts von Staßfurt genommen. Als dritte Quelle haben wir das stromaufwärts liegende Einzugsgebiet erfasst, indem wir das suspendierte Sediment beprobt haben. Für alle Proben wurde der Elementgehalt bestimmt, um das Elementmuster des Feinsediments, das ins Bettsediment eingetragen wurde, und der Quellen zu ermitteln. Der Grund für diese Messstrategie war, dass das Elementmuster des Feinsediments in den Körben aus den Elementmustern der Quellen, Regen- bzw. Mischwassereinleitungen, natürlich vorkommendes Feinsediment und suspendiertes Sediment aus dem Einzugsgebiet, resultieren sollte. Damit ist es möglich, den Beitrag über Mischungsmodelle zu berechnen. Im Untersuchungsgebiet unterscheidet sich das Feinsediment, das von urbanen Flächen stammt, von dem flussbürtigen Feinsediment aufgrund erhöhter Kupfer-, Zink-, Stickstoff- und Phosphorgehalte. Wir haben das Elementmuster der urbanen Flächen mit einer Clusteranalyse genauer untersucht. Dies ergab, dass das partikulär gebundene Elementmuster quellenspezifisch ist, wobei sich Stickstoff, Phosphor und Kohlenstoff Abwasser zuordnen lassen, während die meisten Metalle wie Kupfer und Zink hauptsächlich aus dem Oberflächenabfluss stammen. Das Maß, zu dem die Muster von Messpunkt zu Messpunkt übereinstimmen, wird durch die Variabilität beschränkt, die die Proben eines Messpunktes aufweisen. Diese Variabilität hängt dabei von der Komplexität des Einzugsgebiets ab. Über eine Mischungsrechnung konnten wir berechnen, wie viel urbane Flächen zur Fracht von Feinsediment und daran gebundenen Elementen in den Sedimentkörben beitrugen. Im Untersuchungsgebiet stammen etwa 10 % des Feinsediments, das durch die Sedimentkörbe aufgefangen wurde, von urbanen Flächen. Der Beitrag der Stadt Staßfurt konnte dabei aber nicht von dem Beitrag weiter flussaufwärts gelegener urbaner Gebiete getrennt werden. Daraus folgt, dass weiter stromaufwärts liegende Gebiete mehr beitragen als Staßfurt. Wegen des erhöhten Gehalts an z.B. Kupfer und Zink tragen urbane Flächen ca. 40 % und damit überproportional hoch zur partikulär gebundenen Kupfer- und Zinkfracht bei. Für die Berechung des Quellenbeitrags zum Feinsediment spielt es keine große Rolle, welche Elemente in der Mischungsrechnung berücksichtigt werden. Verschiedene Elementmuster ergeben, dass der Medianbeitrag urbaner Flächen zwischen 0 und 20 % liegt. Dies entspricht dem Interquartilsabstand der ursprünglichen Mischungsrechnung. Ein weiteres Resultat der Untersuchungen ist, dass die Sedimentkörbe den anthropogenen Einfluss überschätzten, weil sie das umgebende Bettsediment nicht exakt abbildeten und als Falle funktionierten. Innerhalb Staßfurts gibt es ein Sodawerk, das seine Produktionsabwässer in die Bode einleitet. Während der Messkampagne wurde diese Quelle nicht direkt erfasst. Es war trotzdem möglich, diese Quelle durch nicht-negative Matrix-Faktorisierung zu identifizieren. Die nicht-negative Matrix-Faktorisierung ergab, dass das Abwasser des Sodawerks eine Hauptquelle des Feinsediments der Bode ist. Bis zu 30 % des Feinsediments in den Sedimentkörben flussabwärts von Staßfurt lassen sich dem Sodawerk zuordnen. Dieses Feinsediment besteht hauptsächlich aus Karbonaten und verdünnt die meisten Elementgehalte. Dies wurde deutlich, indem die Elementbindungen nach dem BCR Extraktionsschema untersucht wurden. Diese Arbeit zeigt die Relevanz, die urbane Flächen als Quelle von Feinsediment und daran gebundener Elementfracht haben, die ins Interstitial eingetragen werden. Sie zeigt, dass die Elementgehalte ein Muster bilden, mit dem es möglich ist, über eine Mischungsrechnung zu klären, wie viel urbane Flächen zum Feinsediment beitragen. Die Arbeit zeigt ferner, dass nicht-negative Matrix-Faktorisierung ermöglicht, eine so charakteristische Quelle wie ein Sodawerk zu identifizieren.
2

Studying the contribution of urban areas to fine sediment and associated element contents in a river bed

David, Telse 16 October 2012 (has links)
Urban wet weather discharge impairs the receiving water and sediment quality. Among other factors, particulate matter plays a role. It increases the suspended sediment load of the receiving water and may thus enhance the clogging of the bed sediment which serves as an important river habitat. This thesis investigates how much urban areas may contribute to the fine sediment and associated element load which is retarded by the bed sediment. It is based on an extensive field study. The study area was the Bode River, a mid-sized stream in Central Germany. About 10 km upstream of the river mouth, the sampling campaign took place close to Staßfurt, a town of 20’000. During the sampling campaign, the intrusion of fine sediment into the bed sediment was captured by sediment traps. Furthermore three possible sources of this fine sediment were sampled. Within the Town of Staßfurt, we sampled urban wet weather discharge at three sites to capture urban areas. As second source naturally occurring fine sediment was considered. Therefore we took sediment cores upstream of the Town of Staßfurt. As third source, the impact of the upstream catchment was captured by taking suspended sediment samples. For all sample types, particle-bound element contents were determined to establish element patterns of the receptor and the source sites. The rationale thereby is that the element pattern at the receptor sites results from the element patterns of the sources. Consequently the contribution of the sources can be calculated by mixing models. In the study area, particulate matter from urban areas is distinct from river borne fine sediment due to elevated copper, zinc, nitrogen and phosphorus contents. We conducted an in-depth analysis of this element pattern by a cluster analysis. It revealed that the particle-bound element pattern is source specific whereby nitrogen, phosphorus and carbon are related to sewage and behave differently than most metals such as copper which mainly originate from surface runoff. The degree to which element patterns agree from site to site is limited by the variability encountered within sample sets from individual sites. Thereby the variability of the element pattern depends on the complexity of the catchment. The contribution of urban areas to fine sediment and associated elements which were captured by sediment traps was calculated by a mixing model. Based on this mixing model, about 10% of the fine sediment originate from urban areas. Thereby the impact of the Town of Staßfurt could not be detected leading to the conclusion that upstream urban areas contribute most. Because of the elevated content of e.g. copper and zinc, urban areas contribute up to 40% and thus disproportionally high to particle-associated copper and zinc load. The source apportionment of the fine sediment is little influenced by the elements considered in the mixing model. Different element patterns showed that the median contribution of urban areas ranges from 0 – 20%. This lies within the interquartile range of the initial mixing model. Another result of the measurement campaign ist that sediment traps over-estimated the anthropogenic impact because they did not resemble the surrounding bed sediment. When they were exposed, they were completely free from fine sediment and hence served as sink of suspended sediment. During the sampling campaign, one source was not directly taken into account. It was possible, though, to delineate this source by nonnegative matrix factorization. Within the Town of Staßfurt, a soda ash production site discharges into the Bode River. The nonnegative matrix factorization uncovered that the soda ash production site is a major source of particulate matter and contributes up to 30% of the fine sediment captured by the traps downstream of the Town of Staßfurt. This source dilutes most element contents as it mainly consists of carbonates. This was revealed by studying the element binding according to the BCR extraction scheme. This thesis shows that urban areas may be a major source of particulate matter and especially associated elements retarded by the bed sediment. It shows that the element contents form a viable pattern to calculate how much urban areas contribute to fine sediment by mixing models. The thesis further shows that nonnegative matrix factorization is a viable tool to delineate such a distinct source as soda ash production site. / Misch- und Regenwasserentlastungen beeinträchtigen die Qualität von Vorflutgewässern. Unter anderem gelangt Feinsediment während Entlastungsereignissen in Vorflutgewässer. Dieses erhöht die Fracht an suspendiertem Sediment und verstärkt die Kolmatierung der Gewässersohle. Damit ist das hyporheische Interstitial, das ein wichtiges Fließgewässerhabitat ist, vom Eintrag von Feinsediment betroffen. Diese Arbeit untersucht, wie sehr urbane Flächen zur Feinsedimentfracht und zur Fracht von partikulär gebundenen Elementen beitragen können, die im Bettsediment zurückgehalten werden. Sie beruht auf einer umfangreichen Messkampagne. Das Untersuchungsgebiet dafür war die Bode, ein mittelgroßer Fluss in Mitteldeutschland. Etwa 10 km flussaufwärts der Mündung fand die Messkampagne nahe der Kleinstadt Staßfurt statt. Im Rahmen dieser Messkampagne haben wir den Eintrag von Feinsediment in das Bettsediment durch Sedimentkörbe erfasst. Drei Quellen dieses Feinsediments haben wir berücksichtigt. In Staßfurt wurden eine Regen- und zwei Mischwassereinleitungen beprobt, um urbane Flächen zu erfassen. Als zweite Quelle wurde natürlich vorkommendes Feinsediment berücksichtigt. Dafür haben wir Sedimentkerne flussaufwärts von Staßfurt genommen. Als dritte Quelle haben wir das stromaufwärts liegende Einzugsgebiet erfasst, indem wir das suspendierte Sediment beprobt haben. Für alle Proben wurde der Elementgehalt bestimmt, um das Elementmuster des Feinsediments, das ins Bettsediment eingetragen wurde, und der Quellen zu ermitteln. Der Grund für diese Messstrategie war, dass das Elementmuster des Feinsediments in den Körben aus den Elementmustern der Quellen, Regen- bzw. Mischwassereinleitungen, natürlich vorkommendes Feinsediment und suspendiertes Sediment aus dem Einzugsgebiet, resultieren sollte. Damit ist es möglich, den Beitrag über Mischungsmodelle zu berechnen. Im Untersuchungsgebiet unterscheidet sich das Feinsediment, das von urbanen Flächen stammt, von dem flussbürtigen Feinsediment aufgrund erhöhter Kupfer-, Zink-, Stickstoff- und Phosphorgehalte. Wir haben das Elementmuster der urbanen Flächen mit einer Clusteranalyse genauer untersucht. Dies ergab, dass das partikulär gebundene Elementmuster quellenspezifisch ist, wobei sich Stickstoff, Phosphor und Kohlenstoff Abwasser zuordnen lassen, während die meisten Metalle wie Kupfer und Zink hauptsächlich aus dem Oberflächenabfluss stammen. Das Maß, zu dem die Muster von Messpunkt zu Messpunkt übereinstimmen, wird durch die Variabilität beschränkt, die die Proben eines Messpunktes aufweisen. Diese Variabilität hängt dabei von der Komplexität des Einzugsgebiets ab. Über eine Mischungsrechnung konnten wir berechnen, wie viel urbane Flächen zur Fracht von Feinsediment und daran gebundenen Elementen in den Sedimentkörben beitrugen. Im Untersuchungsgebiet stammen etwa 10 % des Feinsediments, das durch die Sedimentkörbe aufgefangen wurde, von urbanen Flächen. Der Beitrag der Stadt Staßfurt konnte dabei aber nicht von dem Beitrag weiter flussaufwärts gelegener urbaner Gebiete getrennt werden. Daraus folgt, dass weiter stromaufwärts liegende Gebiete mehr beitragen als Staßfurt. Wegen des erhöhten Gehalts an z.B. Kupfer und Zink tragen urbane Flächen ca. 40 % und damit überproportional hoch zur partikulär gebundenen Kupfer- und Zinkfracht bei. Für die Berechung des Quellenbeitrags zum Feinsediment spielt es keine große Rolle, welche Elemente in der Mischungsrechnung berücksichtigt werden. Verschiedene Elementmuster ergeben, dass der Medianbeitrag urbaner Flächen zwischen 0 und 20 % liegt. Dies entspricht dem Interquartilsabstand der ursprünglichen Mischungsrechnung. Ein weiteres Resultat der Untersuchungen ist, dass die Sedimentkörbe den anthropogenen Einfluss überschätzten, weil sie das umgebende Bettsediment nicht exakt abbildeten und als Falle funktionierten. Innerhalb Staßfurts gibt es ein Sodawerk, das seine Produktionsabwässer in die Bode einleitet. Während der Messkampagne wurde diese Quelle nicht direkt erfasst. Es war trotzdem möglich, diese Quelle durch nicht-negative Matrix-Faktorisierung zu identifizieren. Die nicht-negative Matrix-Faktorisierung ergab, dass das Abwasser des Sodawerks eine Hauptquelle des Feinsediments der Bode ist. Bis zu 30 % des Feinsediments in den Sedimentkörben flussabwärts von Staßfurt lassen sich dem Sodawerk zuordnen. Dieses Feinsediment besteht hauptsächlich aus Karbonaten und verdünnt die meisten Elementgehalte. Dies wurde deutlich, indem die Elementbindungen nach dem BCR Extraktionsschema untersucht wurden. Diese Arbeit zeigt die Relevanz, die urbane Flächen als Quelle von Feinsediment und daran gebundener Elementfracht haben, die ins Interstitial eingetragen werden. Sie zeigt, dass die Elementgehalte ein Muster bilden, mit dem es möglich ist, über eine Mischungsrechnung zu klären, wie viel urbane Flächen zum Feinsediment beitragen. Die Arbeit zeigt ferner, dass nicht-negative Matrix-Faktorisierung ermöglicht, eine so charakteristische Quelle wie ein Sodawerk zu identifizieren.

Page generated in 0.0311 seconds