1 |
Rab-domain dynamics in endocytic membrane trafficking / Zur Dynamik von Rab-Domänen während endozytotischer TransportprozesseRink, Jochen C. 26 April 2005 (has links) (PDF)
Eukaryotic cells depend on cargo uptake into the endocytic membrane system, which comprises a functionally interconnected network of endosomal compartments. The establishment and maintenance of such diverse compartments in face of the high rates of exchange between them, poses a major challenge for obtaining a molecular understanding of the endocytic system. Rab-GTPases have emerged as architectural key element thereof: Individual family members localize selectively to endosomal compartments, where they recruit a multitude of cytoplasmic effector proteins and coordinate them into membrane sub-domains. Such "Rab-domains" constitute modules of molecular membrane identity, which pattern the endocytic membrane system into a mosaic of Rab-domains. The main objective of this thesis research was to link such "static" mosaic-view with the highly dynamic nature of the endosomal system. The following questions were addressed: How are neighbouring Rab-domains coordinated? Are Rab-domains stable or can they undergo assembly and disassembly? Are the dynamics of Rab-domains utilized in cargo transport? The first part of this thesis research focused on the organization of Rab-domains in the recycling pathway. Utilizing Total Internal Reflection (TIRF) microscopy, Rab11-, but neither Rab4- nor Rab5-positive vesicles were observed to fuse with the plasma membrane. Rab4-positive membranes, however, could be induced to fuse in presence of Brefeldin A. Thus, these experiments complete the view of the recycling pathway by the following steps: a) Rab11-carriers likely mediate the return of recycling cargo to the surface; b) such carriers are presumably generated in an Arf-dependent fission reaction from Rab4-positive compartments. Rab11-chromatography was subsequently carried out in the hope of identifying Rab11-effectors functioning at the Rab4-Rab11 domain interface. An as yet uncharacterized ubiquitin ligase was identified, which selectively interacts with both Rab4 and Rab11. Contrary to expectations, however, the protein (termed RUL for *R*ab interacting *U*biquitin *L*igase) does not function in recycling,but appears to mediate trafficking between Golgi/TGN and endosomes instead.In order to address the dynamics of Rab-domains, fluorescently tagged Rab-GTPases were imaged during cargo transport reactions in living cells. Herefore high-speed/long-term imaging procedures and novel computational image analysis tools were developed. The application of such methodology to the analysis of Rab5-positive early endosomes showed that a) The amount of Rab5 associated with individual endosomes fluctuates strongly over time; b) such fluctuations can lead to the "catastrophic" loss of the Rab5-machinery from membranes; c) Rab5 catastrophe is part of a functional cycle of early endosomes, involving net centripetal motility, continuous growth and increase in Rab5 density. Next, the relevance of Rab5 catastrophe with respect to cargo transfer into either the recycling- or degradative pathway was examined. Recycling cargo (transferrin) could be observed to exit Rab5-positive early endosomes via the frequent budding of tubular exit carriers. Exit of degradative cargo (LDL) from Rab5-positive endosomes did not involve budding, but the rapid loss of Rab5 from the limiting membrane.Rab5-loss was further coordinated with the concomitant acquisition of Rab7, suggesting "Rab conversion" as mechanism of transport between early- and late endosomes.Altogether, this thesis research has shown that first, Rab-machineries can be acquired and lost from membranes. Second, such dynamics provide a molecular mechanism for cargo exchange between endosomal compartments. Jointly, these findings lead to the concept of Rab-domain dynamics modulation in /trans/ between neighbouring domains as mechanistic principle behind the dynamic organization of membrane trafficking pathways.
|
2 |
Rab-domain dynamics in endocytic membrane traffickingRink, Jochen C. 07 March 2005 (has links)
Eukaryotic cells depend on cargo uptake into the endocytic membrane system, which comprises a functionally interconnected network of endosomal compartments. The establishment and maintenance of such diverse compartments in face of the high rates of exchange between them, poses a major challenge for obtaining a molecular understanding of the endocytic system. Rab-GTPases have emerged as architectural key element thereof: Individual family members localize selectively to endosomal compartments, where they recruit a multitude of cytoplasmic effector proteins and coordinate them into membrane sub-domains. Such "Rab-domains" constitute modules of molecular membrane identity, which pattern the endocytic membrane system into a mosaic of Rab-domains. The main objective of this thesis research was to link such "static" mosaic-view with the highly dynamic nature of the endosomal system. The following questions were addressed: How are neighbouring Rab-domains coordinated? Are Rab-domains stable or can they undergo assembly and disassembly? Are the dynamics of Rab-domains utilized in cargo transport? The first part of this thesis research focused on the organization of Rab-domains in the recycling pathway. Utilizing Total Internal Reflection (TIRF) microscopy, Rab11-, but neither Rab4- nor Rab5-positive vesicles were observed to fuse with the plasma membrane. Rab4-positive membranes, however, could be induced to fuse in presence of Brefeldin A. Thus, these experiments complete the view of the recycling pathway by the following steps: a) Rab11-carriers likely mediate the return of recycling cargo to the surface; b) such carriers are presumably generated in an Arf-dependent fission reaction from Rab4-positive compartments. Rab11-chromatography was subsequently carried out in the hope of identifying Rab11-effectors functioning at the Rab4-Rab11 domain interface. An as yet uncharacterized ubiquitin ligase was identified, which selectively interacts with both Rab4 and Rab11. Contrary to expectations, however, the protein (termed RUL for *R*ab interacting *U*biquitin *L*igase) does not function in recycling,but appears to mediate trafficking between Golgi/TGN and endosomes instead.In order to address the dynamics of Rab-domains, fluorescently tagged Rab-GTPases were imaged during cargo transport reactions in living cells. Herefore high-speed/long-term imaging procedures and novel computational image analysis tools were developed. The application of such methodology to the analysis of Rab5-positive early endosomes showed that a) The amount of Rab5 associated with individual endosomes fluctuates strongly over time; b) such fluctuations can lead to the "catastrophic" loss of the Rab5-machinery from membranes; c) Rab5 catastrophe is part of a functional cycle of early endosomes, involving net centripetal motility, continuous growth and increase in Rab5 density. Next, the relevance of Rab5 catastrophe with respect to cargo transfer into either the recycling- or degradative pathway was examined. Recycling cargo (transferrin) could be observed to exit Rab5-positive early endosomes via the frequent budding of tubular exit carriers. Exit of degradative cargo (LDL) from Rab5-positive endosomes did not involve budding, but the rapid loss of Rab5 from the limiting membrane.Rab5-loss was further coordinated with the concomitant acquisition of Rab7, suggesting "Rab conversion" as mechanism of transport between early- and late endosomes.Altogether, this thesis research has shown that first, Rab-machineries can be acquired and lost from membranes. Second, such dynamics provide a molecular mechanism for cargo exchange between endosomal compartments. Jointly, these findings lead to the concept of Rab-domain dynamics modulation in /trans/ between neighbouring domains as mechanistic principle behind the dynamic organization of membrane trafficking pathways.
|
Page generated in 0.0697 seconds