• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 10
  • 10
  • 7
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse der Lokalisation und Protein, Proteininteraktionen der kleinen GTPase rab1b

Köster, Miriam. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Münster (Westfalen).
2

Characterisation of novel Rab5 effector proteins in the endocytic pathway

Schnatwinkel, Carsten. Unknown Date (has links) (PDF)
Techn. University, Diss., 2004--Dresden.
3

Rab-domain dynamics in endocytic membrane trafficking

Rink, Jochen. Unknown Date (has links) (PDF)
Techn. University, Diss., 2005--Dresden.
4

Rab-Proteine kontrollieren die Chlamydien-induzierte Fragmentierung des Golgi-Apparates

Lipinski, Anette Rejman 28 August 2009 (has links)
Weltweit kommt es jährlich zu 90 Mio. Neuinfektionen mit dem sexuell übertragbaren Erreger Chlamydia trachomatis. Allerdings sind die Faktoren, die eine erfolgreiche bakterielle Vermehrung ermöglichen, weitgehend unbekannt. Während ihrer obligat intrazellulären Entwicklung sind Chlamydien auf die Errichtung und Erhaltung ihrer Nische, der Inklusion, angewiesen. Durch Interaktionen mit vesikulären Transportwegen der Wirtszelle, welche z.B. Sphingolipide transportieren, sichern die Bakterien ihr Überleben. In der vorliegenden Arbeit konnte gezeigt werden, dass Chlamydien während einer Infektion die Auflösung der Struktur des Golgi-Apparates induzieren. Mit Hilfe der RNA-Interferenz-Technik (RNAi) wurden die Auswirkungen des Verlustes von Golgi-Strukturproteinen auf die bakterielle Vermehrung untersucht. Der funktionelle Ausfall von Golginen, wie z.B. Golgin-84 führte zu einer Fragmentierung des Golgi-Apparates. Diese begünstigte die chlamydiale Produktion neuer infektiöser Partikel, was eine verbesserte Versorgung mit Nährstoffen nahelegt. Im vesikulären Transport von Nährstoffen übernehmen Rab-Proteine eine Schlüsselrolle. Interessanterweise konnte in dieser Arbeit gezeigt werden, dass der Verlust von Rab6 und Rab11 durch RNAi zu einer signifikanten Verringerung der Anzahl infektiöser Nachkommen führte. In diesen Zellen wurde der Golgi-Apparat nicht fragmentiert und der Transport von Sphingolipiden zu den Bakterien war stark vermindert. Untersuchungen nach simultaner Herunterregulation von Golgin-84 und Rab6 oder Rab11 demonstrierten abschließend, dass eine Kontrolle der Golgin-84-induzierten Golgi-Fragmentierung über Rab-Proteine möglich sein könnte. Die Ergebnisse dieser Arbeit offenbaren einen neuen Zusammenhang zwischen der Struktur des Golgi-Apparates und dessen Kontrolle über Rab-Proteine und ermöglichen einen tieferen Einblick in die Funktion des Golgi-Apparates während einer Chlamydien-Infektion. / Worldwide, approximately 90 mio. people are infected with the obligate intracellular bacterium Chlamydia trachomatis. However the factors involved in its successful infection and replication remain unknown. Chlamydia survive and replicate within a membrane bound niche inside host cells, termed the inclusion. To ensure survival, the chlamydial inclusion intercepts vesicular trafficking pathways of the host cell to acquire essential nutrients, such as sphingolipids. However, the exact mechanisms by which Chlamydia acquire these lipids have not been elucidated. The present work established that infection of host mammalian cells with C. trachomatis induced fragmentation of the Golgi-apparatus, but details of the mechanism to the bacterium’s pathogenesis are still required. Using RNA-Interference the role of specific Golgi-apparatus structural proteins in bacterial infectivity was investigated. Knockdown of Golgins in host cells resulted in a fragmented Golgi-apparatus and an associated increase in chlamydial replication, suggesting an enhanced acquisition of nutrients. Since Rab-proteins are known to co-ordinate the intracellular vesicular transport of nutrients, their importance in chlamydial infectivity was also investigated. Interestingly, knock down of Rab6 and Rab11 led to a significant reduction in infectious progeny. Surprisingly, upon knock down of Rab6 or Rab11 the Golgi-apparatus remained intact and sphingolipid transport into the inclusion was severely perturbed. Finally, analysis of cells simultaneously depleted of golgin-84 and Rab6 or Rab11 suggested a possible role of Rab-proteins in the control of golgin-84-induced Golgi fragmentation. These data demonstrate a yet unknown relationship between the structure of the Golgi-apparatus and its regulation and control by Rab-proteins. Furthermore, this work contributes to the existing knowledge regarding the function of the Golgi-apparatus during chlamydial infections.
5

Rab-domain dynamics in endocytic membrane trafficking / Zur Dynamik von Rab-Domänen während endozytotischer Transportprozesse

Rink, Jochen C. 26 April 2005 (has links) (PDF)
Eukaryotic cells depend on cargo uptake into the endocytic membrane system, which comprises a functionally interconnected network of endosomal compartments. The establishment and maintenance of such diverse compartments in face of the high rates of exchange between them, poses a major challenge for obtaining a molecular understanding of the endocytic system. Rab-GTPases have emerged as architectural key element thereof: Individual family members localize selectively to endosomal compartments, where they recruit a multitude of cytoplasmic effector proteins and coordinate them into membrane sub-domains. Such "Rab-domains" constitute modules of molecular membrane identity, which pattern the endocytic membrane system into a mosaic of Rab-domains. The main objective of this thesis research was to link such "static" mosaic-view with the highly dynamic nature of the endosomal system. The following questions were addressed: How are neighbouring Rab-domains coordinated? Are Rab-domains stable or can they undergo assembly and disassembly? Are the dynamics of Rab-domains utilized in cargo transport? The first part of this thesis research focused on the organization of Rab-domains in the recycling pathway. Utilizing Total Internal Reflection (TIRF) microscopy, Rab11-, but neither Rab4- nor Rab5-positive vesicles were observed to fuse with the plasma membrane. Rab4-positive membranes, however, could be induced to fuse in presence of Brefeldin A. Thus, these experiments complete the view of the recycling pathway by the following steps: a) Rab11-carriers likely mediate the return of recycling cargo to the surface; b) such carriers are presumably generated in an Arf-dependent fission reaction from Rab4-positive compartments. Rab11-chromatography was subsequently carried out in the hope of identifying Rab11-effectors functioning at the Rab4-Rab11 domain interface. An as yet uncharacterized ubiquitin ligase was identified, which selectively interacts with both Rab4 and Rab11. Contrary to expectations, however, the protein (termed RUL for *R*ab interacting *U*biquitin *L*igase) does not function in recycling,but appears to mediate trafficking between Golgi/TGN and endosomes instead.In order to address the dynamics of Rab-domains, fluorescently tagged Rab-GTPases were imaged during cargo transport reactions in living cells. Herefore high-speed/long-term imaging procedures and novel computational image analysis tools were developed. The application of such methodology to the analysis of Rab5-positive early endosomes showed that a) The amount of Rab5 associated with individual endosomes fluctuates strongly over time; b) such fluctuations can lead to the "catastrophic" loss of the Rab5-machinery from membranes; c) Rab5 catastrophe is part of a functional cycle of early endosomes, involving net centripetal motility, continuous growth and increase in Rab5 density. Next, the relevance of Rab5 catastrophe with respect to cargo transfer into either the recycling- or degradative pathway was examined. Recycling cargo (transferrin) could be observed to exit Rab5-positive early endosomes via the frequent budding of tubular exit carriers. Exit of degradative cargo (LDL) from Rab5-positive endosomes did not involve budding, but the rapid loss of Rab5 from the limiting membrane.Rab5-loss was further coordinated with the concomitant acquisition of Rab7, suggesting "Rab conversion" as mechanism of transport between early- and late endosomes.Altogether, this thesis research has shown that first, Rab-machineries can be acquired and lost from membranes. Second, such dynamics provide a molecular mechanism for cargo exchange between endosomal compartments. Jointly, these findings lead to the concept of Rab-domain dynamics modulation in /trans/ between neighbouring domains as mechanistic principle behind the dynamic organization of membrane trafficking pathways.
6

Lysosome biogenesis during osteoclastogenesis

Apfeldorfer, Coralie 29 November 2006 (has links) (PDF)
Lysosomes are acidic, hydrolase-rich vesicles capable of degrading most biological macromolecules. During the past several decades, much has been learned about different aspects of lysosome biogenesis. The selective phosphorylation of mannose residues on lysosomal enzymes, in conjunction with specific receptors for the mannose-6-phosphate recognition marker, has been found to be largely responsible for the targeting of newly synthesized lysosomal enzymes to lyzosomes. It is known that lysosomes receive input from both the endocytotic and biosynthetic pathways. Nevertheless the exact molecular mechanisms responsible for sorting of the biosynthetic imput involved in the lysosome biogenesis is still a matter of debate. Because osteoclast precursors do not secrete their lysosomal enzymes and osteoclasts do, the observation of modifications occuring during osteoclastogenesis is a good model to observe mechanisms responsible for lysosomal enzymes traffic. Osteoclasts are bone-degrading cells. To perform this specific task they have to reorganise the sorting of their lysosomal enzymes to be able to target them toward the bone surface in mature cells. Since few years, the differentiation of osteoclasts in vitro did help to study these cells. Osteoclast morphology has been therefore already well studied, and the nature of their specific membrane domains is now established. Sensing the proximity of a bone-like surface the cell reorganises its cytoskeleton, and creates specific membrane domains: an actin-rich ring-like zone (named actin ring) surrounded by highly ruffled membrane (named the ruffled border) where enzymes are secreted, while subsequent bone degradation products are endocytosed. Endocytosed material is then transported through the cell inside transcytotic vesicles and released at the top of the cell in an area named the functional secretory domain. Several molecular machineries are thought to control these different phenomena. The main purpose of this thesis was to identify the major regulators of lysosomal enzymes secretion and therefore to identify the molecular switches responsible for such a membrane traffic re-organisation.
7

Lysosome biogenesis during osteoclastogenesis

Apfeldorfer, Coralie 23 November 2006 (has links)
Lysosomes are acidic, hydrolase-rich vesicles capable of degrading most biological macromolecules. During the past several decades, much has been learned about different aspects of lysosome biogenesis. The selective phosphorylation of mannose residues on lysosomal enzymes, in conjunction with specific receptors for the mannose-6-phosphate recognition marker, has been found to be largely responsible for the targeting of newly synthesized lysosomal enzymes to lyzosomes. It is known that lysosomes receive input from both the endocytotic and biosynthetic pathways. Nevertheless the exact molecular mechanisms responsible for sorting of the biosynthetic imput involved in the lysosome biogenesis is still a matter of debate. Because osteoclast precursors do not secrete their lysosomal enzymes and osteoclasts do, the observation of modifications occuring during osteoclastogenesis is a good model to observe mechanisms responsible for lysosomal enzymes traffic. Osteoclasts are bone-degrading cells. To perform this specific task they have to reorganise the sorting of their lysosomal enzymes to be able to target them toward the bone surface in mature cells. Since few years, the differentiation of osteoclasts in vitro did help to study these cells. Osteoclast morphology has been therefore already well studied, and the nature of their specific membrane domains is now established. Sensing the proximity of a bone-like surface the cell reorganises its cytoskeleton, and creates specific membrane domains: an actin-rich ring-like zone (named actin ring) surrounded by highly ruffled membrane (named the ruffled border) where enzymes are secreted, while subsequent bone degradation products are endocytosed. Endocytosed material is then transported through the cell inside transcytotic vesicles and released at the top of the cell in an area named the functional secretory domain. Several molecular machineries are thought to control these different phenomena. The main purpose of this thesis was to identify the major regulators of lysosomal enzymes secretion and therefore to identify the molecular switches responsible for such a membrane traffic re-organisation.
8

Characterisation of Novel Rab5 Effector Proteins in the Endocytic Pathway / Charakterisierung neuer Rab5-Effektoren in der Endozytose

Schnatwinkel, Carsten 25 December 2004 (has links) (PDF)
Endocytosis, a process of plasma membrane invaginations, is a fundamental cellular mechanism, ensuring uptake of nutrients, enhanced communication between cells, protective functions against invasive pathogens and remodelling of the plasma membrane composition. In turn, endocytic mechanisms are exploited by pathogens to enter their host cells. Endocytosis comprises multiple forms of which our molecular understanding has mostly advanced with respect to clathrin-mediated endocytosis and phagocytosis. Studies on the small GTPase Rab5 have provided important insights into the molecular mechanism of endocytosis and transport in the early stages of the endocytic pathways. Rab5 is a key regulator of clathrin-mediated endocytosis, but in addition, localises to several distinct endocytic carriers including phagosomes and pinocytic vesicles. On early endosomes, Rab5 coordinates within a spatially restricted domain enriched in phosphatidylinositol-3 phosphate PI(3)P a complex network of effectors, including PI3-Kinase (PI3-K), the FYVE-finger proteins EEA1 and Rabenosyn-5 that functionally cooperate in membrane transport. Moreover, Rab5 regulates endocytosis from the apical and basolateral plasma membrane in polarised epithelial cells. During my PhD thesis, I investigated the molecular mechanisms of endocytosis both in polarised and non-polarised cells. I obtained new insights into the molecular mechanisms of endocytosis and their coordination through the functional characterization of a novel Rab5 effector, termed Rabankyrin-5. I could demonstrated that Rabankyrin-5 is a novel PI(3)P-binding Rab5 effector that localises to early endosomes and stimulates their fusion activity in vitro. The latter activity depends on the oligomerisation of Rabankyrin-5 on the endosomal membrane via the N-terminal BTB/POZ domain. In addition to early endosomes, however, Rabankyrin-5 localises to large vacuolar structures that correspond to macropinosomes in epithelial cells and fibroblasts. Overexpression of Rabankyrin-5 increases the number of macropinosomes and stimulates fluid phase uptake whereas its downregulation through RNA interference inhibits these processes. In polarised epithelial cells, the function of Rabankyrin-5 is primarily restricted to the apical membrane. It localises to large pinocytic structures underneath the apical surface of kidney proximal tubule cells and its overexpression in polarised MDCK cells specifically stimulates apical but not basolateral, non-clathrin mediated pinocytosis. In demonstrating a regulatory role in endosome fusion and (macro)-pinocytosis, my studies suggest that Rab5 regulates and coordinates different endocytic mechanisms through its effector Rabankyrin-5. Furthermore, the active role in apical pinocytosis in epithelial cells suggests an important function of Rabankyrin-5 in the physiology of polarised cells. The results obtained in this thesis are central not only for our understanding of the basic principles underlying the regulation of multiple endocytic mechanisms. They are also relevant for the biomedical field, since actin-dependent (macro)-pinocytosis is an important mechanism for the physiology of cells and organisms and is upregulated under certain pathological conditions (e.g. cancer).
9

Characterisation of Novel Rab5 Effector Proteins in the Endocytic Pathway

Schnatwinkel, Carsten 04 November 2004 (has links)
Endocytosis, a process of plasma membrane invaginations, is a fundamental cellular mechanism, ensuring uptake of nutrients, enhanced communication between cells, protective functions against invasive pathogens and remodelling of the plasma membrane composition. In turn, endocytic mechanisms are exploited by pathogens to enter their host cells. Endocytosis comprises multiple forms of which our molecular understanding has mostly advanced with respect to clathrin-mediated endocytosis and phagocytosis. Studies on the small GTPase Rab5 have provided important insights into the molecular mechanism of endocytosis and transport in the early stages of the endocytic pathways. Rab5 is a key regulator of clathrin-mediated endocytosis, but in addition, localises to several distinct endocytic carriers including phagosomes and pinocytic vesicles. On early endosomes, Rab5 coordinates within a spatially restricted domain enriched in phosphatidylinositol-3 phosphate PI(3)P a complex network of effectors, including PI3-Kinase (PI3-K), the FYVE-finger proteins EEA1 and Rabenosyn-5 that functionally cooperate in membrane transport. Moreover, Rab5 regulates endocytosis from the apical and basolateral plasma membrane in polarised epithelial cells. During my PhD thesis, I investigated the molecular mechanisms of endocytosis both in polarised and non-polarised cells. I obtained new insights into the molecular mechanisms of endocytosis and their coordination through the functional characterization of a novel Rab5 effector, termed Rabankyrin-5. I could demonstrated that Rabankyrin-5 is a novel PI(3)P-binding Rab5 effector that localises to early endosomes and stimulates their fusion activity in vitro. The latter activity depends on the oligomerisation of Rabankyrin-5 on the endosomal membrane via the N-terminal BTB/POZ domain. In addition to early endosomes, however, Rabankyrin-5 localises to large vacuolar structures that correspond to macropinosomes in epithelial cells and fibroblasts. Overexpression of Rabankyrin-5 increases the number of macropinosomes and stimulates fluid phase uptake whereas its downregulation through RNA interference inhibits these processes. In polarised epithelial cells, the function of Rabankyrin-5 is primarily restricted to the apical membrane. It localises to large pinocytic structures underneath the apical surface of kidney proximal tubule cells and its overexpression in polarised MDCK cells specifically stimulates apical but not basolateral, non-clathrin mediated pinocytosis. In demonstrating a regulatory role in endosome fusion and (macro)-pinocytosis, my studies suggest that Rab5 regulates and coordinates different endocytic mechanisms through its effector Rabankyrin-5. Furthermore, the active role in apical pinocytosis in epithelial cells suggests an important function of Rabankyrin-5 in the physiology of polarised cells. The results obtained in this thesis are central not only for our understanding of the basic principles underlying the regulation of multiple endocytic mechanisms. They are also relevant for the biomedical field, since actin-dependent (macro)-pinocytosis is an important mechanism for the physiology of cells and organisms and is upregulated under certain pathological conditions (e.g. cancer).
10

Rab-domain dynamics in endocytic membrane trafficking

Rink, Jochen C. 07 March 2005 (has links)
Eukaryotic cells depend on cargo uptake into the endocytic membrane system, which comprises a functionally interconnected network of endosomal compartments. The establishment and maintenance of such diverse compartments in face of the high rates of exchange between them, poses a major challenge for obtaining a molecular understanding of the endocytic system. Rab-GTPases have emerged as architectural key element thereof: Individual family members localize selectively to endosomal compartments, where they recruit a multitude of cytoplasmic effector proteins and coordinate them into membrane sub-domains. Such "Rab-domains" constitute modules of molecular membrane identity, which pattern the endocytic membrane system into a mosaic of Rab-domains. The main objective of this thesis research was to link such "static" mosaic-view with the highly dynamic nature of the endosomal system. The following questions were addressed: How are neighbouring Rab-domains coordinated? Are Rab-domains stable or can they undergo assembly and disassembly? Are the dynamics of Rab-domains utilized in cargo transport? The first part of this thesis research focused on the organization of Rab-domains in the recycling pathway. Utilizing Total Internal Reflection (TIRF) microscopy, Rab11-, but neither Rab4- nor Rab5-positive vesicles were observed to fuse with the plasma membrane. Rab4-positive membranes, however, could be induced to fuse in presence of Brefeldin A. Thus, these experiments complete the view of the recycling pathway by the following steps: a) Rab11-carriers likely mediate the return of recycling cargo to the surface; b) such carriers are presumably generated in an Arf-dependent fission reaction from Rab4-positive compartments. Rab11-chromatography was subsequently carried out in the hope of identifying Rab11-effectors functioning at the Rab4-Rab11 domain interface. An as yet uncharacterized ubiquitin ligase was identified, which selectively interacts with both Rab4 and Rab11. Contrary to expectations, however, the protein (termed RUL for *R*ab interacting *U*biquitin *L*igase) does not function in recycling,but appears to mediate trafficking between Golgi/TGN and endosomes instead.In order to address the dynamics of Rab-domains, fluorescently tagged Rab-GTPases were imaged during cargo transport reactions in living cells. Herefore high-speed/long-term imaging procedures and novel computational image analysis tools were developed. The application of such methodology to the analysis of Rab5-positive early endosomes showed that a) The amount of Rab5 associated with individual endosomes fluctuates strongly over time; b) such fluctuations can lead to the "catastrophic" loss of the Rab5-machinery from membranes; c) Rab5 catastrophe is part of a functional cycle of early endosomes, involving net centripetal motility, continuous growth and increase in Rab5 density. Next, the relevance of Rab5 catastrophe with respect to cargo transfer into either the recycling- or degradative pathway was examined. Recycling cargo (transferrin) could be observed to exit Rab5-positive early endosomes via the frequent budding of tubular exit carriers. Exit of degradative cargo (LDL) from Rab5-positive endosomes did not involve budding, but the rapid loss of Rab5 from the limiting membrane.Rab5-loss was further coordinated with the concomitant acquisition of Rab7, suggesting "Rab conversion" as mechanism of transport between early- and late endosomes.Altogether, this thesis research has shown that first, Rab-machineries can be acquired and lost from membranes. Second, such dynamics provide a molecular mechanism for cargo exchange between endosomal compartments. Jointly, these findings lead to the concept of Rab-domain dynamics modulation in /trans/ between neighbouring domains as mechanistic principle behind the dynamic organization of membrane trafficking pathways.

Page generated in 0.0766 seconds