• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 351
  • 125
  • 60
  • 59
  • 8
  • 7
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 742
  • 439
  • 105
  • 98
  • 89
  • 87
  • 79
  • 76
  • 52
  • 49
  • 49
  • 48
  • 48
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Radiative transfer in spherical circumstellar dust envelopes

Apruzese, John Patrick, January 1974 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1974. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
22

Broadband solar irradiances measured on fixed and stabilized platforms comparison of observations and their uncertainties /

McDowall, Gregory. Ellingson, Robert George, January 1900 (has links)
Thesis (M. S.)--Florida State University, 2006. / Advisor: Robert Ellingson, Florida State University, College of Arts and Sciences, Dept. of Meteorology. Title and description from dissertation home page (viewed June 9, 2006). Document formatted into pages; contains ix, 40 pages. Includes bibliographical references.
23

Optical pulse propagation, diffusion and depolarization in discrete random media /

Kim, Arnold D. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 134-141).
24

Direct-semidirect and multistep processes in radiative proton capture reactions at intermediate energies /

Kim, Wooyoung January 1986 (has links)
No description available.
25

A method for the solution of the equation of radiative transfer for resonance lines /

Price, David Graves January 1975 (has links)
No description available.
26

Radiative proton capture at 35-100 MeV /

Kovash, Michael Andrew January 1978 (has links)
No description available.
27

Silicon wafer surface temperature measurement using light-pipe radiation thermometers in rapid thermal processing systems

Qu, Yan. January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
28

Transitional spaces : the potential of semi-outdoor spaces as a means for environmental control with special reference to Portugal

Cadima, Paula San Payo January 2000 (has links)
No description available.
29

Improved understanding of aerosol processes using satellite observations of aerosol optical properties

Bulgin, Claire Elizabeth January 2010 (has links)
Atmospheric aerosols are the largest remaining uncertainty in the Earth’s radiative budget and it is important that we improve our knowledge of aerosol processes if we are to understand current radiative forcing and accurately project changes in future climate. Aerosols affect the radiation balance directly through the absorption and scattering of incoming solar radiation and indirectly through the modification of cloud microphysical properties. Understanding aerosol forcing remains challenging due to the short atmospheric residence time of aerosols resulting in large spatial and temporal heterogeneity in aerosol loading and chemical composition. Satellite retrievals are becoming increasingly important to improving our knowledge of aerosol forcing. They provide regular global data at finer spatial and temporal resolution than available through sparse groundbased point measurements or localised aircraft campaigns, but cannot unambiguously determine aerosol speciation, relying heavily on a priori assumptions. In this thesis I use data from two satellite instruments: the Along Track Scanning Radiometer 2 (ATSR-2) and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) interpreted using the Oxford-RAL Aerosol and Cloud (ORAC) retrieval scheme in three pieces of interrelated work. First I use satellite observations of aerosol optical depth a and cloud particle effective radius re from the ATSR-2 instrument in 1997 to investigate the Twomey indirect effect (IE, -δ ln re /δ ln τa) in regions of continental outflow. I generally find a negative correlation between τa and re with the strongest inverse relationships downwind of Africa. North America and eastern Asian continental outflow exhibits a strong seasonal dependence, as expected. Global values for IE range from 0.10 to 0.16, consistent with theoretical predictions. Downwind of Africa, I find that the IE is unphysically high but robust (r = −0.85) during JJA associated with high aerosol loading, and attribute this tentatively to the Twomey hypothesis accounting only for a limited number of physical properties of aerosols. Second, I test the response of the Oxford-RAL Aerosol and Cloud (ORAC) retrieval algorithm for MSG SEVIRI to changes in the aerosol properties used in the dust aerosol model, using data from the Dust Outflow and Deposition to the Ocean (DODO) flight campaign in August 2006. I find that using the observed DODO free tropospheric aerosol size distribution and refractive index compared with the dust aerosol properties from the Optical Properties of Aerosol and Cloud (OPAC) package, increases simulated top of the atmosphere radiance at 0.55 μm assuming a fixed aerosol optical depth of 0.5, by 10–15%, reaching a maximum difference at low solar zenith angles. This difference is sensitive to changes in AOD, increasing by ~2–4% between AOD of 0.4–0.6. I test the sensitivity of the retrieval to the vertical distribution of the aerosol and find that this is unimportant in determining simulated radiance at 0.55 μm. I also test the ability of the ORAC retrieval when used to produce the GlobAerosol dataset to correctly identify continental aerosol outflow from the African continent and I find that it poorly constrains aerosol speciation. I develop spatially and temporally resolved prior distributions of aerosols to inform the retrieval which incorporates five aerosol models: desert dust, maritime, biomass burning, urban and continental. I use a Saharan Dust Index and the GEOS-Chem chemistry transport model to describe dust and biomass burning aerosol outflow, and compare AOD using my speciation against the GlobAerosol retrieval during January and July 2006. I find AOD discrepancies of 0.2–1 over regions of biomass burning outflow, where AOD from my aerosol speciation and the GlobAerosol speciation can differ by as much as 50 - 70 %. Finally I use satellite observations of aerosol optical depth and cloud fraction from the MSG SEVIRI instrument to investigate the semi-direct effect of Saharan dust aerosol on marine stratocumulus cloud cover over the Atlantic during July 2006. I first use these data to study the spatial autocorrelation of aerosol optical depth and find that it is correlated over a lag of 0.1◦ (approximately 10 km at low latitudes), beyond which it rapidly decorrelates. I find a 15 % higher cloud fraction in regions with high dust loading (AOD > 0.5), compared with scenes with a lower dust loading (AOD < 0.5), which for high dust scenes increases with local static stability. I attribute this tentatively to aerosol solar shielding enhancing longwave cloud top radiative cooling which drives marine stratocumulus convection.
30

Bio-Inspired CACO<sup>3</sup> Nanocomposite for Efficient Radiative Cooling

Zixuan Zhao (6636170) 14 May 2019 (has links)
Passive radiative cooling favors the transfer of energy to the deep space (2.7K) by emitting in the transparent atmosphere region (8-13m) and reflecting incoming solar irradiation. To achieve desired daytime or night time cooling performance, scientists have explored various fine-tuned photonic material combinations and layering techniques. However, the high cost, UV absorption or telecommunication interferences due to the metallic material used. Scalable and low-cost nonmetal materials have been studied, but the absorption in the UV range still remains a limitation. Single crystal CaCO_3was found to be highly reflective in the UV range, but it has not been explored for radiative cooling applications yet. In this work we first studied the reflectance in the solar range of seashells of multi-millimeters thick, and found over 70% reflectance. Inspired by this promising result, we fabricated a bio-inspired material — CaCO_3 acrylic nanocomposite, and optimized the nanoparticle size to most strongly reflect the sunlight. We analyzed its performance using Mie Theory and Monte Carlo Simulation for multiple size distribution with dependent scattering correction. The results are in excellent agreement with the experimental data. With 60% volume concentration, the simulation results showed that the total solar reflectance of CaCO_3 can achieve up to 97% . Insights obtained from this work will aid researchers in selecting economical, scalable, and manufacturable materials for radiative cooling applications. <br>

Page generated in 0.06 seconds