Spelling suggestions: "subject:"neurosurgery""
11 |
Improving the therapeutic ratio of stereotactic radiosurgery and radiotherapyAndisheh, Bahram January 2012 (has links)
New methods of high dose delivery, such as intensity modulated radiation therapy (IMRT), stereotactic radiation therapy (SRT) or stereotactic radiosurgery (SRS), hadron therapy, tomotherapy, etc., all make use of a few large fractions. To improve these treatments, there are three main directions: (i) improving physical dose distribution, (ii) optimizing radiosurgery dose-time scheme and (iii) modifying dose response of tumors or normal tissues. Different radiation modalities and systems have been developed to deliver the best possible physical dose to the target while keeping radiation to normal tissue minimum. Although applications of radiobiological findings to clinical practice are still at an early stage, many studies have shown that sublethal radiation damage repair kinetics plays an important role in tissue response to radiation. The purpose of the present thesis is to show how the above-mentioned directions could be used to improve treatment outcomes with special interest in radiation modalities and dose-time scheme, as well as radiobiological modeling. Also for arteriovenous malformations (AVM), the possible impact of AVM network angiostructure in radiation response was studied. / Nya och förbättrade metoder för precisionsbestrålning, såsom intensitetsmodulerad strålbehandling (IMRT), stereotaktisk strålbehandling (SRT), stereotaktisk strålkirurgi (SRS) eller hadronterapi etc., gör det möjligt att leverera behandlingen i ett fåtal fraktioner med höga doser. Dessa behandlingmetoder kan ytterligare förbättras genom att (i) förbättra den fysikaliska dosfördelningen, (ii) optimera dosrater och fraktioneringsscheman eller (iii) modifiera dosresponsen hos tumörer eller normalvävnad. Olika strålmodaliteter och behandlingssystem har tagits fram för att kunna leverera bästa möjliga fysikaliska dosfördelning till targetvolymen samtidigt som dosen till frisk vävnad hålls så låg som möjligt. Även om användandet av radiobiologisk kunskap och modeller i klinisk rutin ännu är i sin linda så visar många studier att kinetiken för subletal reparation av strålskador har stor betydelse för strålresponsen. Syftet med denna avhandling är att visa hur dessa olika utvecklingsvägar kan användas för att förbättra behandlingsresultatet speciellt genom att studera vald strålmodalitet, dosrat och fraktioneringsschema samt radiobiologisk modellering. För arteriovenösa missbildningar (AVM) har även studerats hur strukturen hos angionätverket påverkar strålresponsen. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>
|
12 |
Optimization Models and Techniques for Radiation Treatment Planning Applied to Leksell Gamma Knife(R) Perfexion(TM)Ghaffari, Hamid 11 December 2012 (has links)
Radiation treatment planning is a process through which a certain plan is devised in order
to irradiate tumors or lesions to a prescribed dose without posing surrounding organs
to the risk of receiving radiation. A plan comprises a series of shots at di erent positions
with di erent shapes. The inverse planning approach which we propose utilizes certain
optimization techniques and builds mathematical models to come up with the right
location and shape, for each shot, automating the whole process. The models which
we developed for PerfexionTM unit (Elekta, Stockholm, Sweden), in essence, have come
to the assistance of oncologists in automatically locating isocentres and de ning sector
durations. Sector duration optimization (SDO) and sector duration and isocentre location
optimization (SDIO) are the two classes of these models. The SDO models, which
are, in fact, variations of equivalent uniform dose optimization model, are solved by two
nonlinear optimization techniques, namely Gradient Projection and our home-developed
Interior Point Constraint Generation. In order to solve SDIO model, a commercial optimization
solver has been employed. This study undertakes to solve the isocentre selection
and sector duration optimization. Moreover, inverse planning is evaluated, using clinical
data, throughout the study. The results show that automated inverse planning contributes
to the quality of radiation treatment planning in an unprecedentedly optimal
fashion, and signi cantly reduces computation time and treatment time.
|
13 |
Optimization Models and Techniques for Radiation Treatment Planning Applied to Leksell Gamma Knife(R) Perfexion(TM)Ghaffari, Hamid 11 December 2012 (has links)
Radiation treatment planning is a process through which a certain plan is devised in order
to irradiate tumors or lesions to a prescribed dose without posing surrounding organs
to the risk of receiving radiation. A plan comprises a series of shots at di erent positions
with di erent shapes. The inverse planning approach which we propose utilizes certain
optimization techniques and builds mathematical models to come up with the right
location and shape, for each shot, automating the whole process. The models which
we developed for PerfexionTM unit (Elekta, Stockholm, Sweden), in essence, have come
to the assistance of oncologists in automatically locating isocentres and de ning sector
durations. Sector duration optimization (SDO) and sector duration and isocentre location
optimization (SDIO) are the two classes of these models. The SDO models, which
are, in fact, variations of equivalent uniform dose optimization model, are solved by two
nonlinear optimization techniques, namely Gradient Projection and our home-developed
Interior Point Constraint Generation. In order to solve SDIO model, a commercial optimization
solver has been employed. This study undertakes to solve the isocentre selection
and sector duration optimization. Moreover, inverse planning is evaluated, using clinical
data, throughout the study. The results show that automated inverse planning contributes
to the quality of radiation treatment planning in an unprecedentedly optimal
fashion, and signi cantly reduces computation time and treatment time.
|
14 |
Hypofractionated conformal stereotactic radiotherapy in the treatment of AVMs and cerebral metastases /Lindvall, Peter, January 2006 (has links)
Diss. (sammanfattning) Umeå : Univ., 2006. / Härtill 5 uppsatser.
|
15 |
Spinal radiation oncology using a conventional linear accelerator with add-on multileaf collimator and image-guided patient positioning system. / 常規直線加速器附加多葉準直器及影像導引病人定位系統於脊椎放射腫瘤學之應用 / CUHK electronic theses & dissertations collection / Chang gui zhi xian jia su qi fu jia duo ye zhun zhi qi ji ying xiang dao yin bing ren ding wei xi tong yu ji zhui fang she zhong liu xue zhi ying yongJanuary 2013 (has links)
Ngar, Yuen Kan. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 157-159). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
16 |
Is waiting time a quality service indicator for radiotherapytreatment?: the effect of waiting time onlocal tumour control for nasopharyngeal carcinoma patients in HongKongTze, Mei-yu, Jadie., 謝美瑜. January 2006 (has links)
published_or_final_version / Community Medicine / Master / Master of Public Health
|
17 |
Características dosimétricas para campos pequenos, visando a implementação de um sistema postal de controle de qualidade na radiocirurgia / Small fields dosimetric characteristics for the radiosurgical quality control postal system implementationCalcina, Carmen Sandra Guzmán 28 August 2006 (has links)
A radiocirurgia é uma técnica especialmente indicada para o tratamento de lesões intracranianas pequenas. Uma das características marcantes desta técnica é a necessidade da utilização de feixes com diâmetros pequenos, dirigidos com precisão num volume alvo. O tratamento comumente utiliza feixes de fótons produzidos por aceleradores lineares (6 e 10 MV) e valores altos de dose absorvida (> 20 Gy). Este trabalho tem por objetivos principais a implementação de um Sistema de Controle de Qualidade Postal (CQP) na radiocirurgia, para avaliação da dose fornecida ao volume alvo e a precisão do posicionamento desse volume [AAPM (1995)]. Dessa forma, para garantir a consistência entre a prescrição clínica da dose absorvida e a sua administração ao paciente, um estudo da caracterização de dosímetros foi realizado, para se avaliar vantagens e desvantagens de cada um deles para os citados objetivos. Os dosímetros (Câmara de ionização (CI), Fricke (FXG), termoluminescente (TLD) e filme) foram utilizados na obtenção de parâmetros dosimétricos para campos pequenos (< 5 cm) quadrados e circulares. Dois desses dosímetros (TLD e filme) foram selecionados para aplicação no CQP na radiocirurgia, devido as suas resolução espacial, praticidade e equivalência ao tecido. Para tal, objetos simuladores (OSs) em acrílico um para avaliação dos parâmetros de campos pequenos e outro para simulação do crânio de um paciente (com um volume alvo) foram confeccionados. Irradiações postais foram feitas em 3 diferentes instituições, que fazem uso da radiocirurgia, e dessas análises pode-se concluir que o sistema postal desenvolvido pode ser utilizado para controlar feixes radiocirúrgicos em programas nacionais e internacionais de CQ na radiocirurgia. / Radiosurgery is a special technique indicated for small intracranial injuries treatment. For that, a high dose (> 20 Gy) from 6 and 10 MV fotons is delivered into a small target volume. The scope of this work is to implement a Quality Control Postal System (QCP) in radiosurgery, in order to evaluate the absorbed dose delivered to the target volume [AAPM (1995)]. In this way the consistency between the clinical absorbed dose prescription and its administration to the patient, could be guaranted. For such, a dosimeters characterization study had been carried out in order to evaluate the advantages and disadvantages of each one of the selected dosimeters (Ionization chamber (IC), Fricke (FXG), termoluminescent (TLD) and film). First they were applied to obtain small square and circular field dosimetric parameters, and latter, the two more suitable for the QCP application (as the TLD and film) were selected. Acrylic phantoms were planned and manufactured to simulate a small targed volume inserted in a human skull in order to check the precision of its position and the dose delivered. The phantom was sent to 3 different radiosurgery institutions and their shown that the QCP system is reliable to be used in national and/or international programs of quality control in radiosurgery.
|
18 |
Aceite, comissionamento e controle de qualidade em radiocirurgia / Acceptance, commissioning and quality control in radiosurgeryToreti, Dalila Luzia 01 December 2009 (has links)
A Radiocirurgia Estereotática é a técnica de tratamento que usa feixes estreitos de radiação focalizados com grande exatidão em uma lesão pequena. A introdução dos colimadores micro multi-lâminas (mMLC) permite que essa técnica alcance um maior grau de conformação de dose na lesão alvo, possibilitando uma menor irradiação das estruturas críticas e dos tecidos normais. Este trabalho visa apresentar os resultados dos testes de aceite e do comissionamento de um acelerador linear Varian ® 6EX dedicado à Radiocirurgia, associado com o colimador multi-lâminas da BrainLab ® instalado no Hospital das Clínicas da Faculdade de Medicina da USP (HC-FMUSP) e estabelecer um Programa de Garantia de Qualidade que seja exequível para os serviços que pretendem implantar essa técnica especial. Os resultados dos testes de aceitação mostraram-se coerentes e satisfatórios com as especificações definidas pelo fabricante e os testes de comissionamento ficaram dentro das recomendações internacionais. Os testes e as medidas que compõem o processo de controle de qualidade devem ser específicos para cada unidade de tratamento, assim como a necessidade, a frequência e os níveis de tolerância. / Stereotactic Radiosurgery is a treatment technique that uses narrow beams of radiation focused with great accuracy in a small lesion. The introduction of micro multileaf collimators (mMLC) allows this technique to reach a higher degree of dose conformation of the target lesion allowing a smaller irradiation of critical structures and normal tissues. This paper presents the results of the acceptance tests and commissioning of a Varian ® 6EX linear accelerator dedicated to radiosurgery associated with the BrainLab ® micro multileaf collimator installed in the Hospital das Clínicas da Faculdade de Medicina da USP (HC-FMUSP) and establish feasible quality assurance program for the services that employ this special technique. The results of the acceptance tests were satisfactory and are willing with the specifications provided by the manufacturer and the commissioning tests were within the international recommendations. The tests and measures that are part of quality control process should be specific to each treatment unit, and the need, frequency and levels of tolerance.
|
19 |
Dosimetry comparison between treatment plans computed with Finite size pencil beam algorithm and Monte Carlo algorithm using InCise™ Multileaf collimator equipped CyberKnife® SystemUnknown Date (has links)
Since the release of the Cyberknife Multileaf Collimator (CK-MLC), it has been a constant
concern on the realistic dose differences computed with its early-available Finite Size
Pencil Beam algorithm (FSPB) from those computed by using industry well-accepted
algorithms such as the Monte Carlo (MC) dose algorithm. In this study dose disparities
between FSPB and MC dose calculation algorithms for selected CK-MLC treatment plans
were quantified. The dosimetry for planning target volume (PTV) and major organs at risks
(OAR) was compared by calculating normalized percentage deviations (Ndev) between the
two algorithms. It is found that the FSPB algorithm overestimates D95 of PTV when
compared with the MC algorithm by averaging 24.0% in detached lung cases, and 15.0%
in non-detached lung cases which is attributed to the absence of heterogeneity correction
in the FSPB algorithm. Average dose differences are 0.3% in intracranial and 0.9% in
pancreas cases. Ndev for the D95 of PTV range from 8.8% to 14.1% for the CK-MLC lung
treatment plans with small field (SF ≤ 2x2cm2). Ndev is ranged from 0.5-7.0% for OARs. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
|
20 |
Potential Efficacy of the Monte Carlo Dose Calculations of 6MV Flattening Filter-Free Photon Beam of M6™ Cyberknife® SystemUnknown Date (has links)
MapCheck measurements for 50 retrospective patient’s treatment plans suggested that MapCheck could be effectively employed in routine patient specific quality assurance in M6 Cyberknife with beams delivered at different treatment angles. However, these measurements also suggested that for highly intensity modulated MLC plans, field segments of width < 8 mm should further be analyzed with a modified (-4%) correction factor. Results of MC simulations of the M6 Cyberknife using the EGSnrc program for 2-5 millions of incident particles in BEAMnrc and 10-20 millions in DOSXYZnrc have shown dose uncertainties within 2% for open fields from 7.6 x 7.7 mm2 to 100 x 100 mm2. Energy and corresponding FWHM were optimized by comparing with water phantom measurements at 800 mm SAD resulting to E = 7 MeV and FWHM = 2.2 mm. Good agreement of dose profiles (within 2%) and outputs (within 3%) were found between the MC simulations and water phantom measurements for the open fields. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
|
Page generated in 0.059 seconds