• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation interactive par points d'objets complexes à partir d'images

Duranleau, François January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Sur les propriétés algébriques et géométriques des groupes de Kac-Moody

RÉMY, Bertrand 10 December 2003 (has links) (PDF)
Ce mémoire présente un point de vue issu de la théorie des groupes discrets sur les groupes de Kac-Moody. Sur les corps finis, ces groupes sont de type fini ; ils opèrent sur de nouveaux immeubles jouissant bien souvent de remarquables propriétés de courbure négative. On justifie que les groupes de Kac-Moody de type fini peuvent être vus comme des généralisations de certains groupes $S$-arithmétiques en caractéristique positive. On explique comment ils fournissent de nouveaux immeubles, et pourquoi on peut s'attendre à ce que les groupes eux-mêmes soient nouveaux. Nous considérons aussi des groupes totalement discontinus généralisant certains groupes semi-simples sur des corps locaux, comme en attestent leurs propriétés combinatoires fines et leur simplicité topologique. L'étude de leurs frontières de Furstenberg est évoquée. Nous résumons la preuve de la complète non linéarité de certains groupes de Kac-Moody. C'est ici que nous utilisons les propriétés des groupes topologiques précédents, en les combinant à un théorème de super-rigidité du commensurateur. En fait, on peut construire des groupes dont toutes les images linéaires sont finies, quel que soit le corps de base à l'arrivée. Enfin, nous conjecturons divers résultats sur les groupes précédemment définis, par exemple, la non linéarité (et peut-être la simplicité) d'une vaste classe de groupes de Kac-Moody de présentation finie. Nous conjecturons également la simplicité abstraite des groupes de Kac-Moody géométriquement complétés, et proposons un lien entre ces groupes et une autre définition des groupes de Kac-Moody (issue de l'étude des variétés de Schubert et de la théorie des représentations). Nous relions ces conjectures à des travaux en cours sur les compactifications d'immeubles de Bruhat-Tits.
3

Calculs du symbole de kronecker dans le tore / Computations of the Kronecker symbol in the torus

Dupont, Franck 04 December 2017 (has links)
Soit k un corps algébriquement clos de caractéristique 0 et F une suite de n polynômes en intersection complète sur k[X1,...,Xn]. Le Bezoutien de F fournit une forme dualisante sur k[X]/<F> appelée symbole de Kronecker, qui est un analogue algébrique du résidu. L'objet de ce travail est de construire et calculer le symbole de Kronecker dans le tore (C*)n relativement à une famille f de n polynômes de Laurent en n variables. La famille f possède un nombre fini de zéros et est régulière pour ses polytopes de Newton. La représentation du résidu global dans le tore à l'aide d'un résidu torique, donnée par Cattani et Dickenstein, suggère d'interpréter le symbole de Kronecker dans le tore dans la variété torique projective définie par le polytope P, somme de Minkowski des polytopes de Newton de f.Lorsque P est premier, Roy et Szpirglas ont défini le symbole de Kronecker dans le tore à partir des symboles de Kronecker définis sur les ouverts affines de la variété torique Xp relativement à une famille de n + 1 polynômes homogènes sans zéros communs dans la variété Xp. Nous montrons ici que le cas « P non premier » est réductible au cas précédent en explicitant les morphismes d'éclatement qui traduisent le raffinement de l’éventail de Xp en un éventail simplicial. / Let k be an algebraically closed field with char(k) = 0 and let be polynomials F1,..., Fn such that k[X1,...,Xn]/<F1,..., Fn> is a complete intersection k-algebra. The Bezoutian of F1,..., Fn gives a dualizing form acting on k[X1,...,Xn]/<F1,..., Fn> called Kronecker symbol. It is an algebraic analogue of residue. The aim of this work is to build and calculate the Kronecker symbol in the torus (C*)n for a system f of Laurent polynomials with a a finite set of zeroes and regular for its Newton polytopes. In the same way as Cattani and Dickenstein have done for the global residue in the torus, we consider the projective variety given by the Minkowski sum P of the Newton polytopes of f in order to build the Kronecker symbol in the torus.When P is prime, Roy and Szpirglas have defined the Kronecker symbol in the torus from Kronecker symbols on affine subsets of Xp for a system of n+1 homogeneous polynomials with no common zeroes in XP . We prove that the case "P no prime" can be reduced to the previous case by using simplicial refinements of the fan of Xp and making explicit the associated toric morphisms on the total coordinate spaces.

Page generated in 0.0486 seconds